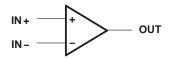
SLOS372 - JUNE 2001

- Wide Range of Supply Voltages; Single Supply . . . 3 V to 36 V, or Dual Supplies
- Class AB Output Stage
- High-Impedance N-Channel-JFET Input Stage . . . 10¹² Ω Typ
- Internal Frequency Compensation
- Short-Circuit Protection
- Input Common Mode Includes V_{CC}
- Low Input Offset Current . . . 50 pA
- Low Input Bias Current . . . 200 pA Typ

description

The TL092 JFET-input operational amplifier is similar in performance to the MC3403 family, but with much higher input impedance derived from a FET input stage. The N-channel-JFET input stage allows a common-mode input voltage range that includes the negative supply voltage and offers a typical input impedance of $10^{12} \Omega$, a typical input offset current of 50 pA, and a typical input bias current of 200 pA. This device is designed to operate from a single supply over a range of 3 V to 36 V. Operation from split supplies also is possible, provided the difference between the two supplies is 3 V to 36 V. Output voltage range is from V_{CC-} to V_{CC+} – 1.3 V, with a load resistor to V_{CC-}.

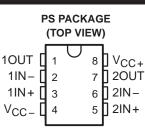

The TL092 is characterized for operation from 0°C to 70°C.

AVAILAD	SLE OPTIONS
	PACKAGED DE

T _A PLASTIC SMALL OUTLINE	
	TL092CPSR

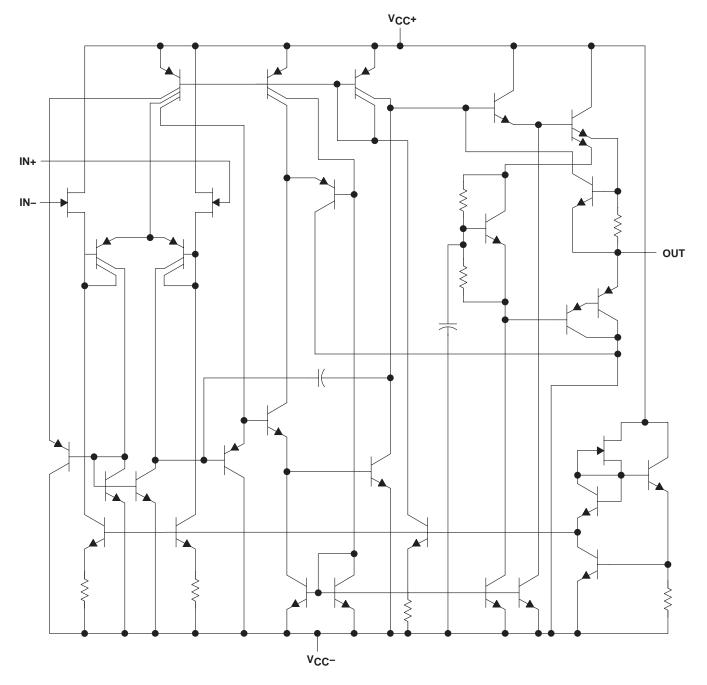
The PS package is only available taped and reeled. Add the suffix R to device type for ordering (e.g., TL092CPSR).

symbol



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2001, Texas Instruments Incorporated

SLOS372 – JUNE 2001

schematic

SLOS372 - JUNE 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage: V _{CC+} (see Note 1)	18 V
V _{CC} (see Note 1)	18 V
V _{CC+} with respect to V _{CC-}	
Differential input voltage, V _{ID} (see Note 2)	±36 V
Input voltage, V _I (see Notes 1 and 3)	±18 V
Package thermal impedance, θ_{JA} (see Notes 4 and 5)	95°C/W
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. Differential voltages are at the noninverting input with respect to the inverting input.

3. Neither input must ever be more positive than V_{CC+} or more negative than V_{CC-} – 0.3 V.

- 4. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	MAX	UNIT
V _{CC±}	Supply voltage	3	36	V
Т _А	Operating free-air temperature range	0	70	°C

SLOS372 - JUNE 2001

electrical characteristics at specified free-air temperature, $V_{CC\pm} = \pm 15 V$ (all characteristics are specified under open-loop conditions, unless otherwise noted)

	PARAMETER	TES	ST CONDITIONS	TA	MIN	TYP†	MAX	UNIT
	hand affectively and	D 5 00		25°C		5	15	
VIO	Input offset voltage	R _S = 50 Ω		Full range			20	mV
αVIO	Temperature coefficient of input offset voltage			25°C		10		μV/°C
. +	land offerst summer t			25°C		50	200	pА
10‡	Input offset current			Full range			5	nA
. +	land black summer			25°C		200	400	pА
IIB‡	Input bias current			Full range			10	nA
VICR	Common-mode input voltage range			25°C	V _{CC} - to 12	V _{CC} - to 13		V
		$R_L = 2 k\Omega$		25°C	±10	±13		
VO(PP)	Peak output voltage swing	$R_L = 10 \ k\Omega$		25°C	±12	±13.5		V
- ()		$R_L = 2 k\Omega$		Full range	±10			
	Large-signal differential			25°C	20	200		
AVD	voltage amplification	$R_L = 2 k\Omega$,	$V_{O} = \pm 10 V$	Full range	15			V/mV
BOM	Maximum output swing bandwidth	$R_{L} = 2 k\Omega,$ AVD = 1,	V _{O(PP)} = 20 V, THD < 5%	25°C		9		kHz
B ₁	Unity gain bandwidth	$R_L = 10 \text{ k}\Omega,$	V _O = 50 mV	25°C		1		MHz
[¢] m	Phase margin	R _L = 2 kΩ,	C _L = 200 pF	25°C		60°		
rj	Input resistance	f = 20 Hz		25°C		1012		Ω
r _o	Output resistance	f = 20 Hz		25°C		75		Ω
CMRR	Common-mode rejection ratio	R _S = 50 Ω,	$V_{IC} = V_{ICR}$	25°C	70	90		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	R _S = 50 Ω,	$V_{CC\pm}$ = ±3 V to ±15 V	25°C	75	90		dB
IOS	Short-circuit output current			25°C		40		mA
ICC	Supply current (per amplifier)	$V_{O} = 0,$	No load	25°C		1.5	2.5	mA

[†] All typical values are at T_A = 25°C. [‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

electrical characteristics at specified free	-air temperature, V _{CC+} = 5 \	$V_{\rm CC-} = 0 \ V_{\rm TA} = 25^{\circ} \rm C$
(unless otherwise noted)		

	PARAMETER	Т	EST CONDITIONS	MIN	TYP†	MAX	UNIT
VIO	Input offset voltage	R _S = 50 Ω,	V _O = 2.5 V		5	15	mV
١O	Input offset current	V _O = 2.5 V			50	200	pА
IIB	Input bias current	V _O = 2.5 V			200	400	pА
	Deale and a dealer and a m	$R_L = 10 \ k\Omega$		3.3	3.5		V
V _{O(PP)}	Peak output voltage swing	$R_L = 10 \text{ k}\Omega$,	$V_{CC+} = 5 V \text{ to } 30 V$	V _{CC+} -1.7			V
A _{VD}	Large-signal differential voltage amplification	$R_L = 2 k\Omega$,	ΔV_{O} =1.6 V	20	200		V/mV
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	R _S = 50 Ω,	$V_{CC\pm}$ = ±3 V to ±15 V	75			dB
ICC	Supply current (per amplifier)	V _O = 2.5 V,	No load		1.5	2.5	mA
V ₀₁ /V ₀₂	Channel separation	f = 1 kHz to 20	kHz		120		dB

[†] All typical values are at $T_A = 25^{\circ}C$.

SLOS372 - JUNE 2001

- P - I		$\mathbf{C}\mathbf{C}$						
	PARAMETER	TEST C	ONDITIONS		MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$V_I = \pm 10 V$ (see Figure 1),	C _L = 100 pF,	$R_L = 2 k\Omega$		0.6		V/µs
t _r	Rise time	ΔV_{O} = 50 mV (see Figure 1),	C _L = 100 pF,	$R_L = 2 k\Omega$		0.2		μs
t _f	Fall time	ΔV_{O} = 50 mV (see Figure 1),	C _L = 100 pF,	$R_L = 2 k\Omega$		0.2		μs
	Overshoot factor	ΔV_{O} = 50 mV (see Figure 1),	C _L = 100 pF,	$R_L = 2 k\Omega$		20%		
	Crossover distortion	$V_{IPP} = 30 \text{ mV}, V_{O(PP)} = 2 \text{ V},$	f = 10 kHz			1%		
Vn	Equivalent input noise voltage	R _S = 100 Ω,	f = 1 kHz			34		nV/√Hz

operating characteristics, $V_{CC\pm} = \pm 15 V$, $T_A = 25^{\circ}C$

PARAMETER MEASUREMENT INFORMATION

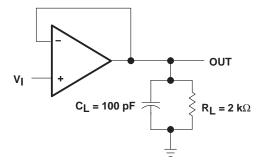


Figure 1. Unity-Gain Amplifier

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TL092CPSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T092	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

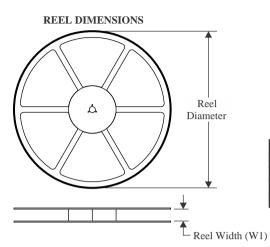
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

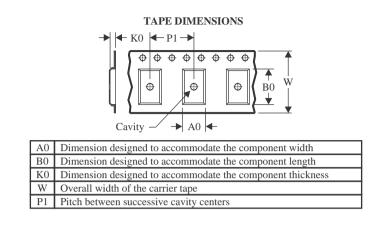
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

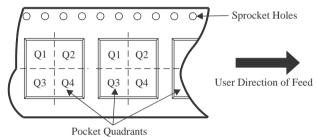
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

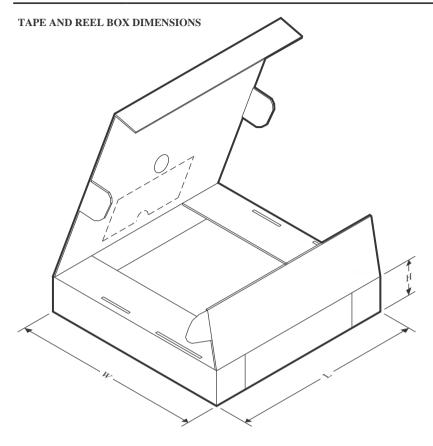

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


www.ti.com

TAPE AND REEL INFORMATION

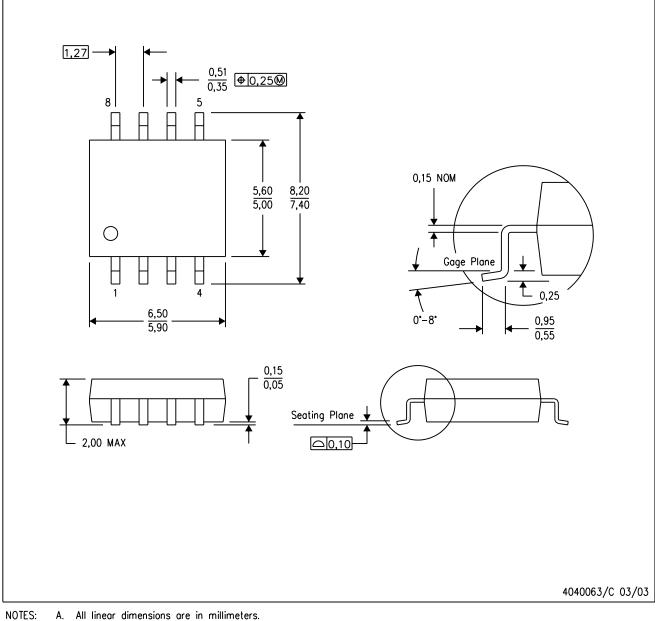
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL092CPSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Jun-2022

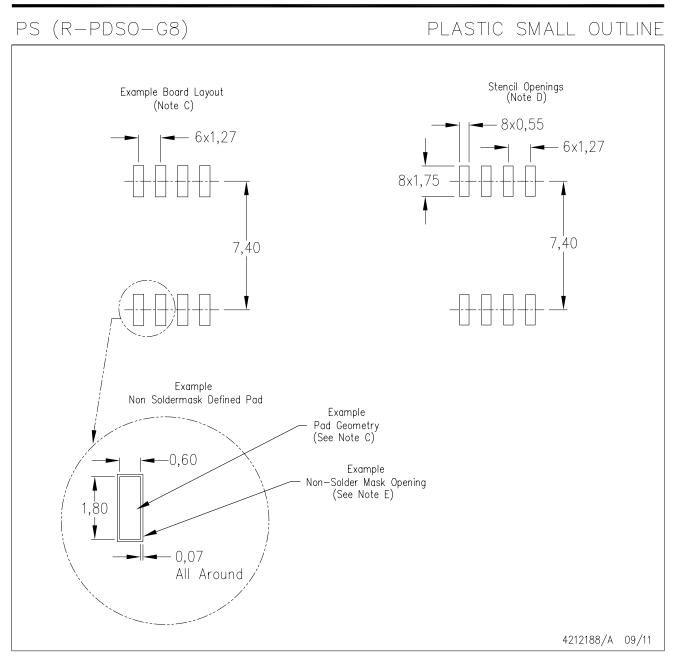

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL092CPSR	SO	PS	8	2000	356.0	356.0	35.0

MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated