Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER

FEATURES

- ADVANTAGES:
- Tiny for High Density Systems
- Precision on One Supply
- Fast Over Eight Decades
- Fully-Tested Function
- TWO SCALING AMPLIFIERS
- WIDE INPUT DYNAMIC RANGE: Eight Decades, 100pA to 10 mA
- 2.5V REFERENCE
- STABLE OVER TEMPERATURE
- LOW QUIESCENT CURRENT: 10 mA
- DUAL OR SINGLE SUPPLY: $\pm 5 \mathrm{~V},+5 \mathrm{~V}$
- PACKAGE: Small QFN-16 ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$)
- SPECIFIED TEMPERATURE RANGE: $-5^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

APPLICATIONS

- ONET ERBIUM-DOPED FIBER OPTIC AMPLIFIER (EDFA)
- LASER OPTICAL DENSITY MEASUREMENT
- PHOTODIODE SIGNAL COMPRESSION AMP
- LOG, LOG-RATIO FUNCTION
- ANALOG SIGNAL COMPRESSION IN FRONT OF ANALOG-TO-DIGITAL (ADC) CONVERTER

DESCRIPTION

The LOG114 is specifically designed for measuring low-level and wide dynamic range currents in communications, lasers, medical, and industrial systems. The device computes the logarithm or log-ratio of an input current or voltage relative to a reference current or voltage (logarithmic transimpedance amplifier).
High precision is ensured over a wide dynamic range of input signals on either bipolar ($\pm 5 \mathrm{~V}$) or single (+5 V) supply. Special temperature drift compensation circuitry is included on-chip. In log-ratio applications, the signal current may be from a high impedance source such as a photodiode or resistor in series with a low impedance voltage source. The reference current is provided by a resistor in series with a precision internal voltage reference, photo diode, or active current source.
The output signal at $\mathrm{V}_{\text {LOGOUT }}$ has a scale factor of 0.375 V out per decade of input current, which limits the output so that it fits within a 5 V or 10 V range. The output can be scaled and offset with one of the available additional amplifiers, so it matches a wide variety of ADC input ranges. Stable dc performance allows accurate measurement of low-level signals over a wide temperature range. The LOG114 is specified over a $-5^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range and can operate from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

- ABSORBANCE MEASUREMENT

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage, V+ to V-
Signal Input Terminals, Voltage ${ }^{(2)} \ldots . .(\mathrm{V}-)-0.5 \mathrm{~V}$ to $(\mathrm{V}+)+0.5 \mathrm{~V}$
Current(2) $\pm 10 \mathrm{~mA}$
Output Short-Circuit(3) . Continuous
Operating Temperature . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature . +150 ${ }^{\circ} \mathrm{C}$
ESD Rating (Human Body Model) 2000V
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current-limited to 10 mA or less.
(3) Short-circuit to ground.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PRECISION CURRENT MEASUREMENT PRODUCTS

FEATURES	PRODUCT
Logarithmic Transimpedance Amplifier, 5V, Eight Decades	LOG114
Logarithmic Transimpedance, 36V, 7.5 Decades	LOG112
Resistor-Feedback Transimpedance, 5V, 5.5 Decades	OPA380, OPA381
Switched Integrator Transimpedance, Six Decades	IVC102
Direct Digital Converter, Six Decades	DDC112

ORDERING INFORMATION(1)

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	PACKAGE MARKING
LOG114	QFN-16	RGV	LOG114

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

PIN CONFIGURATION

QFN-16 (4mm x 4mm)
NC $=$ No Connection

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-5^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
All specifications at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\text {VLOGOUT }}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=\mathrm{GND}$, unless otherwise noted.

PARAMETER		CONDITIONS	LOG114			UNITS	
		MIN	TYP	MAX			
CORE LOG FUNCTION			$\mathrm{I}_{\mathrm{N}} / \mathrm{V}_{\text {OUT }}$ Equation	$\mathrm{V}_{\mathrm{O}}=(0.375 \mathrm{~V}) \log \left(\mathrm{I}_{1} / \mathrm{I}_{2}\right)$			V
LOG CONFORMITY ERROR(1) Initial Over Temperature		1 nA to $100 \mu \mathrm{~A}$ (5 decades) 100pA to 3.5 mA (7.5 decades) 1 mA to 10 mA 1nA to $100 \mu \mathrm{~A}$ (5 decades) 100pA to 3.5 mA (7.5 decades) 1 mA to 10 mA				\% dB \% dB \% \% \%	
TRANSFER FUNCTION (GAIN)(2) Initial Scaling Factor Scaling Factor Error Over Temperature		100pA to 10 mA 1 nA to $100 \mu \mathrm{~A}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $+15^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		$\begin{gathered} 0.375 \\ 0.4 \\ 0.035 \\ 1.5 \\ 0.7 \end{gathered}$	$\begin{gathered} \pm 2.5 \\ 0.21 \\ \pm 3.5 \\ \pm 3 \end{gathered}$	$\begin{gathered} \text { V/decade } \\ \text { \% } \\ \text { dB } \\ \% \\ \% \end{gathered}$	
INPUT, A_{1} and A_{2} Offset Voltage vs Temperature vs Power Supply Input Bias Current vs Temperature Input Common-Mode Voltage Range Voltage Noise Current Noise	V_{OS} dV/dT PSRR I_{B} V_{CM} e_{n} i_{n}	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V} \text { to } \pm 5.5 \mathrm{~V}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\begin{gathered} f=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ f=1 \mathrm{kHz} \\ f=1 \mathrm{kHz} \end{gathered}$	± 1 ± 15 75 ± 5 ± 4 Doubles every $\mathbf{1 0}^{\circ} \mathbf{C}$ $(\mathrm{V}+)-1.5$ 3 30 4			$\begin{gathered} \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{pA} \\ \mathrm{~V} \\ \\ \mu \mathrm{Vrms} \\ \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \mathrm{fA} / \sqrt{\mathrm{Hz}} \end{gathered}$	
OUTPUT, A_{3} (VLOGOUT) Output Offset, $\mathrm{V}_{\text {OSO }}$, Initial Over Temperature Full-Scale Output (FSO)(3) Gain Bandwidth Product Short-Circuit Current Capacitive Load	$\begin{aligned} & \text { VOSO } \\ & \text { GBW } \\ & \text { ISC } \end{aligned}$	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{I}_{\mathrm{N}}=1 \mu \mathrm{~A}$	(V-) + 0.6	$\begin{gathered} \pm 11 \\ \pm 15 \\ \\ 50 \\ \pm 18 \\ 100 \end{gathered}$	$\begin{gathered} \pm 50 \\ \pm 65 \\ (\mathrm{~V}+)-0.6 \end{gathered}$	mV mV V MHz mA pF	
OP AMP, A_{4} and A_{5} Input Offset Voltage vs Temperature vs Supply vs Common-Mode Voltage Input Bias Current Input Offset Current Input Voltage Range Input Noise $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz $\mathrm{f}=1 \mathrm{kHz}$ Current Noise Open-Loop Voltage Gain Gain Bandwidth Product Slew Rate Settling Time 0.01\% Rated Output Short-Circuit Current	V_{OS} dV/dT PSRR CMRR IB los i_{n} AOL GBW SR ts Isc	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text { to } \pm 5.5 \mathrm{~V}$ $G=-1,3 V \text { Step, } C_{L}=100 p F$	(V-) $(\mathrm{V}-)+0.5$	$\begin{gathered} \pm 250 \\ \pm 2 \\ 30 \\ 74 \\ -1 \\ \pm 0.05 \\ \\ 2 \\ 13 \\ 2 \\ 100 \\ 15 \\ 5 \\ 1.5 \\ \\ +4 /-10 \end{gathered}$	$\begin{gathered} \pm 1000 \\ 250 \end{gathered}$ $\left(V_{+}\right)-2$ $(\mathrm{V}+)-0.5$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{~dB} \\ \mu \mathrm{~A} \\ \mu \mathrm{~A} \\ \mathrm{~V} \\ \mu \mathrm{~V} \\ \mathrm{PP} \\ \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ \mathrm{~dB} \\ \mathrm{MHz} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$	

INSTRUMENTS
www.ti.com
SBOS301A - MAY 2004 - REVISED MARCH 2007

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ (continued)

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-5^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
All specifications at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, RVLOGOUT $=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=\mathrm{GND}$, unless otherwise noted.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} \& \multirow[b]{2}{*}{CONDITIONS} \& \multicolumn{3}{|c|}{LOG114} \& \multirow[b]{2}{*}{UNITS} \\
\hline \& \& MIN \& TYP \& MAX \& \\
\hline TOTAL ERROR(4, 5) \& \& \multicolumn{3}{|c|}{See Typical Characteristics} \& \\
\hline \begin{tabular}{l}
FREQUENCY RESPONSE, Core Log(6) \\
BW, \(3 \mathrm{~dB} \mathrm{I}_{1}\) or \(\mathrm{I}_{2}=\) \\
1nA \\
10nA \\
100nA \\
\(1 \mu \mathrm{~A}\) \\
\(10 \mu \mathrm{~A}\) to 1 mA (ratio \(1: 100\)) \\
1 mA to 3.5 mA (ratio \(1: 3.5\)) \\
3.5 mA to 10 mA (ratio 1:2.9) \\
Step Response \\
Increasing (\(\mathrm{l}_{1}\) or \(\mathrm{I}_{2}\)) \\
8nA to 240 nA (ratio 1:30) \\
10nA to 100 nA (ratio 1:10) \\
10 nA to \(1 \mu \mathrm{~A}\) (ratio \(1: 100\)) \\
10 nA to \(10 \mu \mathrm{~A}\) (ratio \(1: 1 \mathrm{k}\)) \\
10nA to 1 mA (ratio \(1: 100 \mathrm{k}\)) \\
1 mA to 10 mA (ratio \(1: 10\)) \\
Decreasing (\(\mathrm{I}_{1}\) or \(\mathrm{I}_{2}\)) \\
\(8 n A\) to 240 nA (ratio 1:30) \\
10nA to 100 nA (ratio 1:10) \\
10 nA to \(1 \mu \mathrm{~A}\) (ratio \(1: 100\)) \\
10 nA to \(10 \mu \mathrm{~A}\) (ratio \(1: 1 \mathrm{k}\)) \\
10nA to 1 mA (ratio \(1: 100 \mathrm{k}\)) \\
1 mA to 10 mA (ratio \(1: 10\))
\end{tabular} \& \[
I_{A C}=10 \% \text { of } I_{D C} \text { value, } I_{R E F}=1 \mu \mathrm{~A}
\]
\[
\mathrm{I}_{\mathrm{REF}}=1 \mu \mathrm{~A}
\]
\[
\mathrm{I}_{\mathrm{REF}}=1 \mu \mathrm{~A}
\] \& \& 5
12
120
2.3
\(>5\)
\(>5\)
\(>5\)

0.7
1.5
0.15
0.07
0.06
1
1
2
0.25
0.05
0.03

1 \& \& | kHz |
| :--- |
| kHz |
| kHz |
| MHz |
| MHz |
| MHz |
| MHz |
| $\mu \mathrm{s}$ |

\hline | VOLTAGE REFERENCE |
| :--- |
| Bandgap Voltage |
| Error, Initial |
| vs Temperature |
| vs Supply |
| vs Load |
| Short-Circuit Current | \& \[

$$
\begin{gathered}
\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text { to } \pm 5.5 \mathrm{~V} \\
\mathrm{I}_{\mathrm{O}}= \pm 2 \mathrm{~mA}
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
2.5 \\
\pm 0.15 \\
\pm 25 \\
\pm 30 \\
\pm 200 \\
\pm 10
\end{gathered}
$$

\] \& ± 1 \& \[

$$
\begin{gathered}
\mathrm{V} \\
\% \\
\mathrm{ppm} /{ }^{\circ} \mathbf{C} \\
\mathrm{ppm} / \mathrm{V} \\
\mathrm{ppm} / \mathrm{mA} \\
\mathrm{~mA}
\end{gathered}
$$
\]

\hline POWER SUPPLY \& $\mathrm{l}=0$ \& ± 2.4 \& ± 10 \& \[
$$
\begin{aligned}
& \pm 5.5 \\
& \pm 15
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
$$
\]

\hline | TEMPERATURE RANGE |
| :--- |
| Specification, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |
| Operating |
| Storage |
| Thermal Resistance, θ_{JA} | \& \& \[

$$
\begin{gathered}
-5 \\
-40 \\
-55
\end{gathered}
$$

\] \& 62 \& \[

$$
\begin{gathered}
+75 \\
+85 \\
+125
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
$$
\]

\hline
\end{tabular}

(1) Log conformity error is peak deviation from the best-fit straight line of V_{O} vs $\log \left(\mathrm{I}_{1} / I_{2}\right)$ curve expressed as a percent of peak-to-peak full-scale output. Scale factor, K , equals 0.375 V output per decade of input current.
(2) Scale factor of core log function is trimmed to 0.375 V output per decade change of input current.
(3) Specified by design.
(4) Worst-case total error for any ratio of I_{1} / I_{2}, as the largest of the two errors, when I , and I_{2} are considered separately.
(5) Total error includes offset voltage, bias current, gain, and log conformity.
(6) Small signal bandwidth (3 dB) and transient response are a function of the level of input current. Smaller input current amplitude results in lower bandwidth.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-5^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
All specifications at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, RVLOGOUT $=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=+2.5 \mathrm{~V}$, unless otherwise noted.

PARAMETER		CONDITIONS	LOG114			UNITS	
		MIN	TYP	MAX			
CORE LOG FUNCTION			$\mathrm{I}_{\mathrm{N}} / \mathrm{V}_{\text {OUT }}$ Equation	$\mathrm{V}_{\mathrm{O}}=(0.375 \mathrm{~V}) \log \left(\mathrm{I}_{1} / \mathrm{I}_{2}\right)+\mathrm{V}_{\mathrm{CM}}$			V
LOG CONFORMITY ERROR(1) Initial Over Temperature		1 nA to $100 \mu \mathrm{~A}$ (5 decades) 100pA to 3.5 mA (7.5 decades) 1 mA to 10 mA 1nA to $100 \mu \mathrm{~A}$ (5 decades) 100pA to 3.5 mA (7.5 decades) 1 mA to 10 mA	0.1 0.25 0.009 0.022 0.9 0.08 See Typical Characteristics 0.1 0.4 0.5			\% dB \% dB \% \%	
TRANSFER FUNCTION (GAIN)(2) Initial Scaling Factor Scaling Factor Error Over Temperature		$10 n A$ to $100 \mu \mathrm{~A}$ 1 nA to $100 \mu \mathrm{~A}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $+15^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}$		$\begin{gathered} 0.375 \\ 0.4 \\ 0.0 .35 \\ 0.035 \\ 0.7 \end{gathered}$	$\begin{gathered} \pm 2.5 \\ 0.21 \\ \pm 3.5 \\ \pm 3 \end{gathered}$	$\begin{gathered} \text { V/decade } \\ \text { \% } \\ \text { dB } \\ \% \\ \% \end{gathered}$	
INPUT, A_{1} and A_{2} Offset Voltage vs Temperature vs Power Supply Input Bias Current vs Temperature Input Common-Mode Voltage Range Voltage Noise Current Noise	V_{OS} dV/dT PSRR I_{B} V_{CM} e_{n} i_{n}	$\begin{gathered} \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \mathrm{V}_{\mathrm{S}}=+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \begin{array}{c} \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ \mathrm{f}=1 \mathrm{kHz} \\ \mathrm{f}=1 \mathrm{kHz} \end{array} \end{gathered}$		$\begin{gathered} \pm 1 \\ \pm 30 \\ 300 \\ \pm 5 \end{gathered}$ ubles every 1 $\begin{gathered} (\mathrm{V}-)+1.5 \text { to } \\ (\mathrm{V}+)-1.5 \\ 3 \\ 30 \\ 4 \end{gathered}$	± 7	$\begin{gathered} \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{pA} \\ \mathrm{~V} \\ \\ \mu \mathrm{Vrms} \\ \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \mathrm{fA} / \sqrt{\mathrm{Hz}} \end{gathered}$	
OUTPUT, A_{3} (VLOGOUT) Output Offset, $\mathrm{V}_{\text {OSO }}$, Initial Over Temperature Full Scale Output (FSO)(3) Gain Bandwidth Product Short-Circuit Current Capacitive Load	$\begin{aligned} & \text { VOSO } \\ & \text { GBW } \\ & \text { ISC } \end{aligned}$	$\begin{gathered} \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{IN}}=1 \mu \mathrm{~A} \end{gathered}$	$(\mathrm{V}-)+0.6$	$\begin{gathered} \pm 14 \\ \pm 18 \\ \\ 50 \\ \pm 18 \\ 100 \end{gathered}$	$\begin{gathered} \pm 65 \\ \pm 80 \\ (\mathrm{~V}+)-0.6 \end{gathered}$	mV mV V MHz mA pF	
OP AMP, A_{4} and A_{5} Input Offset Voltage vs Temperature vs Supply vs Common-Mode Voltage Input Bias Current Input Offset Current Input Voltage Range Input Noise $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz $\mathrm{f}=1 \mathrm{kHz}$ Current Noise Open-Loop Voltage Gain Gain Bandwidth Product Slew Rate Settling Time 0.01\% Rated Output Short-Circuit Current	V_{OS} dV/dT PSRR CMRR IB los i_{n} AOL GBW SR ts Isc	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{V}_{\mathrm{S}}=+4.8 \mathrm{~V} \text { to }+5.5 \mathrm{~V}$ $G=-1,3 V \text { Step, } C_{L}=100 \mathrm{pF}$	(V-) $(\mathrm{V}-)+0.5$	$\begin{gathered} \pm 250 \\ \pm 2 \\ 30 \\ 70 \\ -1 \\ \pm 0.05 \\ \\ 1 \\ 28 \\ 2 \\ 100 \\ 15 \\ 5 \\ 1.5 \\ \\ +4 /-10 \end{gathered}$	± 4000 $\left(\mathrm{V}_{+}\right)-1.5$ $(\mathrm{V}+)-0.5$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{~dB} \\ \mu \mathrm{~A} \\ \mu \mathrm{~A} \\ \mathrm{~V} \\ \mu \mathrm{~V} \mathrm{PP} \\ \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ \mathrm{~dB} \\ \mathrm{MHz} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$	

INSTRUMENTS
www.ti.com
SBOS301A - MAY 2004 - REVISED MARCH 2007

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ (continued)

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-5^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
All specifications at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, RVLOGOUT $=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=+2.5 \mathrm{~V}$, unless otherwise noted.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} \& \multirow[b]{2}{*}{CONDITIONS} \& \multicolumn{3}{|c|}{LOG114} \& \multirow[b]{2}{*}{UNITS} \\
\hline \& \& MIN \& TYP \& MAX \& \\
\hline TOTAL ERROR(4, 5) \& \& \multicolumn{3}{|c|}{See Typical Characteristics} \& \\
\hline \begin{tabular}{l}
FREQUENCY RESPONSE, Core Log(6) \\
BW, \(3 \mathrm{~dB} \mathrm{I}_{1}\) or \(\mathrm{I}_{2}=\) \\
1nA \\
10nA \\
100nA \\
\(1 \mu \mathrm{~A}\) \\
\(10 \mu \mathrm{~A}\) to 1 mA (ratio \(1: 100\)) \\
1 mA to 3.5 mA (ratio \(1: 3.5\)) \\
3.5 mA to 10 mA (ratio 1:2.9) \\
Step Response \\
Increasing (\(\mathrm{I}_{1}\) or \(\mathrm{I}_{2}\)) \\
8nA to 240 nA (ratio 1:30) \\
10nA to 100 nA (ratio 1:10) \\
10 nA to \(1 \mu \mathrm{~A}\) (ratio \(1: 100\)) \\
10 nA to \(10 \mu \mathrm{~A}\) (ratio \(1: 1 \mathrm{k}\)) \\
10 nA to 1 mA (ratio \(1: 100 \mathrm{k}\)) \\
1 mA to 10 mA (ratio \(1: 10\)) \\
Decreasing (\(\mathrm{I}_{1}\) or \(\mathrm{I}_{2}\)) \\
8 nA to 240 nA (ratio 1:30) \\
10nA to 100 nA (ratio 1:10) \\
10 nA to \(1 \mu \mathrm{~A}\) (ratio \(1: 100\)) \\
10 nA to \(10 \mu \mathrm{~A}\) (ratio \(1: 1 \mathrm{k}\)) \\
10 nA to 1 mA (ratio \(1: 100 \mathrm{k}\)) \\
1 mA to 10 mA (ratio \(1: 10\))
\end{tabular} \& \(I_{A C}=10 \%\) of \(I_{D C}\) value, \(I_{R E F}=1 \mu A\)
\[
\mathrm{I}_{\mathrm{REF}}=1 \mu \mathrm{~A}
\]
\[
\mathrm{I}_{\mathrm{REF}}=1 \mu \mathrm{~A}
\] \& \& 5
12
120
2.3
\(>5\)
\(>5\)
\(>5\)

0.7
1.5
0.15
0.07
0.06
1
1
2
0.25
0.05
0.03

1 \& \& | kHz |
| :--- |
| kHz |
| kHz |
| MHz |
| MHz |
| MHz |
| MHz |
| $\mu \mathrm{s}$ |

\hline | VOLTAGE REFERENCE |
| :--- |
| Bandgap Voltage |
| Error, Initial |
| vs Temperature |
| vs Supply |
| vs Load |
| Short-Circuit Current | \& \[

$$
\begin{gathered}
\mathrm{V}_{\mathrm{S}}=+4.8 \mathrm{~V} \text { to }+11 \mathrm{~V} \\
\mathrm{l}_{\mathrm{O}}= \pm 2 \mathrm{~mA}
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
2.5 \\
\pm 0.15 \\
\pm 25 \\
\pm 30 \\
\pm 200 \\
\pm 10
\end{gathered}
$$

\] \& ± 1 \& | V \% |
| :--- |
| \% |
| $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| ppm/V |
| ppm/mA |
| mA |

\hline | POWER SUPPLY |
| :--- |
| Single Supply Operating Range |
| Quiescent Current | \& $\mathrm{l}=0$ \& 4.8 \& ± 10 \& \[

$$
\begin{gathered}
11 \\
\pm 15
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
$$
\]

\hline | TEMPERATURE RANGE |
| :--- |
| Specification, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |
| Operating |
| Storage |
| Thermal Resistance, θ_{JA} | \& \& \[

$$
\begin{gathered}
-5 \\
-40 \\
-55
\end{gathered}
$$

\] \& 62 \& \[

$$
\begin{gathered}
+75 \\
+85 \\
+125
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
$$
\]

\hline
\end{tabular}

(1) Log conformity error is peak deviation from the best-fit straight line of V_{O} vs $\log \left(I_{1} / I_{2}\right)$ curve expressed as a percent of peak-to-peak full-scale output. Scale factor, K , equals 0.375 V output per decade of input current.
(2) Scale factor of core log function is trimmed to 0.375 V output per decade change of input current.
(3) Specified by design.
(4) Worst-case total error for any ratio of $\mathrm{I}_{1} / \mathrm{I}_{2}$, as the largest of the two errors, when I , and I_{2} are considered separately.
(5) Total error includes offset voltage, bias current, gain, and log conformity.
(6) Small signal bandwidth $(3 \mathrm{~dB})$ and transient response are a function of the level of input current. Smaller input current amplitude results in lower bandwidth.
www.ti.com

TYPICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$

All specifications at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, RVLOGOUT $=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=\mathrm{GND}$, unless otherwise noted.

TYPICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ (continued)

All specifications at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, RVLOGOUT $=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=\mathrm{GND}$, unless otherwise noted.

www.ti.com

TYPICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ (continued)

All specifications at $T_{A}=+25^{\circ} \mathrm{C}$, R VLOGOUT $=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=\mathrm{GND}$, unless otherwise noted. For ac measurements, small signal means up to approximately 10% of dc level

SMALL-SIGNAL AC RESPONSE I_{2}
(10% sine modulation)

SMALL-SIGNALAC RESPONSE I_{1}
(10\% sine modulation)

SBOS301A - MAY 2004 - REVISED MARCH 2007

TYPICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ (continued)

All specifications at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, RVLOGOUT $=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=\mathrm{GND}$, unless otherwise noted.

APPLICATIONS INFORMATION

OVERVIEW

The LOG114 is a precision logarithmic amplifier that is capable of measuring currents over a dynamic range of eight decades. It computes the logarithm, or log ratio, of an input current relative to a reference current according to equation (1).
$\mathrm{V}_{\text {LOGOUT }}=0.375 \times \log _{10}\left(\frac{I_{1}}{I_{2}}\right)$
The output at $\mathrm{V}_{\text {LOGOUT }}$ can be digitized directly, or scaled for an ADC input using an uncommitted or external op amp.
An offsetting voltage ($\mathrm{V}_{\mathrm{Com}}$) can be connected to the Com pin to raise the voltage at $\mathrm{V}_{\text {LOGOUt }}$. When an offsetting voltage is used, the transfer function becomes:
$\mathrm{V}_{\text {LOGOUT }}=0.375 \times \log _{10}\left(\frac{I_{1}}{I_{2}}\right)+\mathrm{V}_{\text {Com }}$

Either I_{1} or I_{2} can be held constant to serve as the reference current, with the other input being used for the input signal. The value of the reference current is selected such that the output at $\mathrm{V}_{\text {LOGOUT }}$ (pin 9) is zero when the reference current and input current are equal. An onchip 2.5 V reference is provided for use in generating the reference current.
Two additional amplifiers, A_{4} and A_{5}, are included in the LOG114 for use in scaling, offsetting, filtering, threshold detection, or other functions.

BASIC CONNECTIONS

Figure 1 and Figure 2 show the LOG114 in typical dual and single-supply configurations, respectively. To reduce the influence of lead inductance of power-supply lines, it is recommended that each supply be bypassed with a $10 \mu \mathrm{~F}$ tantalum capacitor in parallel with a 1000 pF ceramic capacitor as shown in Figure 1 and Figure 2. Connecting these capacitors as close to the LOG114 V+ supply pin to ground as possible improves supplyrelated noise rejection.

Figure 1. Dual Supply Configuration Example for Best Accuracy Over Eight Decades.

INSTRUMENTS
www.ti.com
SBOS301A - MAY 2004 - REVISED MARCH 2007

NOTE: (1) In single-supply configuration, $\mathrm{V}_{\mathrm{CM} \text { IN }}$ must be connected to $\geq 1 \mathrm{~V}$.
(2) $\mathrm{V}_{\text {LOGOUT }}=0.375 \times \log \left(1_{1} / I_{2}\right)+2.5 \mathrm{~V}$.
(3) $\mathrm{V}_{\mathrm{O} 4}=-0.249 \times \log \left(\mathrm{I}_{1} / \mathrm{I}_{2}\right)+1.5 \mathrm{~V}$.
(4) The cathode of the photodiode is returned to $\mathrm{V}_{\text {REF }}$ resulting in zero bias across it. The cathode could be returned to a voltage more positive than $\mathrm{V}_{\mathrm{CM} \text { IN }}$ to create a reverse bias for reducing photodiode capacitance, which increases speed.

Figure 2. Single-Supply Configuration Example for Measurement Over Eight Decades.

DESIGN EXAMPLE FOR DUAL-SUPPLY CONFIGURATION

Given these conditions:

- $\mathrm{V}_{+}=5 \mathrm{~V}$ and $\mathrm{V}-=-5 \mathrm{~V}$
- $100 \mathrm{pA} \leq$ Input signal
- The stage following the LOG114 is an analog-todigital converter (ADC) with +5 V supply and +2.5 V reference voltage, so $\mathrm{V}_{\mathrm{O} 4}$ swings from +0.5 V to +2.5 V .

1. Due to LOG114 symmetry, you can choose either I_{1} or I_{2} as the signal input pin. Choosing I_{1} as the reference makes the resistor network around A4 simpler. (Note: Current must flow into pins $3\left(I_{1}\right)$ and pin $4\left(\mathrm{I}_{2}\right)$.)
2. Select the magnitude of the reference current. Since the signal $\left(I_{2}\right)$ spans eight decades, set l_{1} to $1 \mu \mathrm{~A}$ - four decades above the minimum I_{2} value. (Note that it does not have to be placed in the middle. If I_{2} spanned seven decades, I_{1} could be set three decades above the minimum and four decades below the maximum I_{2} value.) This configuration results in more swing amplitude in the negative direction, which provides more sensitivity $\left(\Delta \mathrm{V}_{\mathrm{O4}}\right.$ per $\Delta \mathrm{I}_{2}$) when the current signal decreases.
3. Using Equation (1) calculate the expected range of log outputs at V LOGOUT:

$$
\begin{align*}
& \text { For } I_{2}=10 \mathrm{~mA}: \\
& V_{\text {LOGOUT }}=0.375 \times \log \left(\frac{I_{1}}{I_{2}}\right) \\
& =0.375 \times \log \left(\frac{1 \mu \mathrm{~A}}{10 \mathrm{~mA}}\right)=-1.5 \mathrm{~V} \\
& \text { For } \mathrm{I}_{2}=100 \mathrm{pA}: \\
& V_{\text {LOGOUT }}=0.375 \times \log \left(\frac{I_{1}}{I_{2}}\right) \\
& =0.375 \times \log \left(\frac{1 \mu \mathrm{~A}}{100 \mathrm{pA}}\right)=+1.5 \mathrm{~V} \tag{3}
\end{align*}
$$

Therefore, the expected voltage range at the output of amplifier A_{3} is:

$$
\begin{equation*}
-1.5 \mathrm{~V} \leq \mathrm{V}_{\text {LOGOUT }} \leq+1.5 \mathrm{~V} \tag{4}
\end{equation*}
$$

4. The A_{4} amplifier scales and offsets the $V_{\text {LOGOUT }}$ signal for use by the ADC using the equation:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{O} 4}=-\mathrm{S}_{\text {FACTOR }} \times\left(\mathrm{V}_{\text {LOGOUT }}\right)+\mathrm{V}_{\text {OFFSET }} \tag{5}
\end{equation*}
$$

The A_{4} amplifier is specified with a rated output swing capability from ($\mathrm{V}-$) +0.5 V to $(\mathrm{V}+)-0.5 \mathrm{~V}$.
Therefore, choose the final A_{4} output:

$$
0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O} 4} \leq+2.5 \mathrm{~V}
$$

This output results in a 2.5 V range for the $3 \mathrm{~V} \mathrm{~V}_{\text {LOGOUT }}$ range, or $2.5 \mathrm{~V} / 3 \mathrm{~V}$ scaling factor.
5. When $\mathrm{I}_{2}=10 \mathrm{~mA}$, $\mathrm{V}_{\text {LOGOUt }}=-1.5 \mathrm{~V}$. Using the equation in step 5:

$$
\begin{align*}
& V_{\text {O4 }}=-S_{\text {FACTOR }} \times\left(\mathrm{V}_{\text {LOGOUT }}\right)+\mathrm{V}_{\text {OFFSET }} \\
& 0 \mathrm{~V}=-2.5 \mathrm{~V} / 3 \mathrm{~V}(-1.5 \mathrm{~V})+\mathrm{V}_{\text {OFFSET }} \tag{6}
\end{align*}
$$

Therefore, $\mathrm{V}_{\text {OFFSET }}=0 \mathrm{~V}$
The A_{4} amplifier configuration for $\mathrm{V}_{\mathrm{O} 4}=-2.5 / 3\left(\mathrm{~V}_{\text {LOGOUT }}\right)$ +0 V is seen in Figure 3.
The overall transer function is:
$V_{04}=-0.249 \times \log \left(\frac{I_{1}}{I_{2}}\right)+1.5 \mathrm{~V}$

Figure 3. Operational Amplifier Configuration for Scaling the Output Going to ADC Stage.

DESIGN EXAMPLE FOR SINGLE-SUPPLY CONFIGURATION

Given these conditions:

- $\mathrm{V}+=5 \mathrm{~V}$
- $\mathrm{V}-=\mathrm{GND}$
- $100 \mathrm{pA} \leq$ Input signal $\leq 10 \mathrm{~mA}$
- The stage following the LOG114 is an analog to digital converter (ADC) with +5 V supply and +2.5 V reference voltage

1. Choose either I_{1} or I_{2} as the signal input pin. For this example, I_{2} is used. Choosing I_{1} as the reference current makes the resistor network around A4 simpler. (Note: Current only flows into the I_{1} and I_{2} pins.)
2. Select the magnitude of the reference current. Since the signal $\left(l_{2}\right)$ spans eight decades, set l_{1} to $1 \mu \mathrm{~A}$ - four decades above the minimum I_{2} value, and four decades below the maximum I_{2} value. (Note that it does not have to be placed in the middle. If I_{2} spanned seven decades, l_{1} could be set three decades above the minimum and four decades below the maximum I_{2} value.) This configuration results in more swing amplitude in the negative direction, which provides more sensitivity $\left(\Delta \mathrm{V}_{\mathrm{O4}}\right.$ per $\left.\Delta \mathrm{I}_{2}\right)$ when the current signal decreases.
3. Using Equation (1) calculate the expected range of log outputs at VLOGOUT:

$$
\begin{align*}
& \text { For } I_{2}=10 \mathrm{~mA}: \\
& V_{\text {LOGOUT }}=0.375 \times \log \left(\frac{I_{1}}{I_{2}}\right) \\
& =0.375 \times \log \left(\frac{1 \mu \mathrm{~A}}{10 \mathrm{~mA}}\right)=-1.5 \mathrm{~V} \\
& \text { For } I_{2}=100 \mathrm{pA}: \\
& V_{\text {LOGOUT }}=0.375 \times \log \left(\frac{I_{1}}{I_{2}}\right) \\
& =0.375 \times \log \left(\frac{1 \mu \mathrm{~A}}{100 \mathrm{pA}}\right)=+1.5 \mathrm{~V} \tag{8}
\end{align*}
$$

Therefore, the expected voltage range at the output of amplifier A_{3} is:
$-1.5 \mathrm{~V} \leq \mathrm{V}_{\text {Logout }} \leq+1.5 \mathrm{~V}$

This result would be fine in a dual-supply system ($\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$) where the output can swing below ground, but does not work in a single supply +5 V system. Therefore, an offset voltage must be added to the system.
4. Select an offset voltage, $\mathrm{V}_{\text {com }}$ to use for centering the output between $(\mathrm{V}-)+0.6 \mathrm{~V}$ and $(\mathrm{V}+)-0.6 \mathrm{~V}$, which is the full-scale output capability of the A_{3} amplifier. Choosing $\mathrm{V}_{\text {Com }}=2.5 \mathrm{~V}$, and recalculating the expected voltage output range for $V_{\text {LOGOUT }}$ using Equation (2), results in:

$$
\begin{equation*}
+1 \mathrm{~V} \leq \mathrm{V}_{\text {LOGOUT }} \leq+4 \mathrm{~V} \tag{10}
\end{equation*}
$$

5. The A_{4} amplifier scales and offsets the $\mathrm{V}_{\text {LOGOUT }}$ signal for use by the ADC using the equation:

$$
\begin{equation*}
\mathrm{V}_{\text {O4 }}=-\mathrm{S}_{\text {FACTOR }} \times\left(\mathrm{V}_{\text {LOGOUT }}\right)+\mathrm{V}_{\text {OFFSET }} \tag{11}
\end{equation*}
$$

The A_{4} amplifier is specified with a rated output swing capability from ($\mathrm{V}-$) +0.5 V to $(\mathrm{V}+)-0.5 \mathrm{~V}$.
Therefore, choose the final A4 output:

$$
+0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O} 4} \leq+2.5 \mathrm{~V}
$$

This output results in a 2 V range for the 3 V V LOGOUT range, or $2 \mathrm{~V} / 3 \mathrm{~V}$ scaling factor.
6. When $\mathrm{I}_{2}=10 \mathrm{~mA}, \mathrm{~V}_{\text {LOGOUT }}=+1 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{O} 4}=2.5 \mathrm{~V}$. Using the equation in step 5 :

$$
\begin{align*}
& \mathrm{V}_{\text {O4 }}=-\mathrm{S}_{\text {FACTOR }} \times\left(\mathrm{V}_{\text {LOGOUT }}\right)+\mathrm{V}_{\text {OFFSET }} \\
& 2.5 \mathrm{~V}=-2 \mathrm{~V} / 3 \mathrm{~V}(1 \mathrm{~V})+\mathrm{V}_{\text {OFFSET }} \tag{12}
\end{align*}
$$

Therefore, $\mathrm{V}_{\text {OFFSET }}=3.16 \mathrm{~V}$
The A_{4} amplifier configuration for $\mathrm{V}_{\mathrm{O} 4}=-2 / 3\left(\mathrm{~V}_{\text {LOGOUT }}\right)+$ 3.16 is seen in Figure 4a.

The overall transer function is:
$\mathrm{V}_{04}=-0.249 \times \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right)+1.5 \mathrm{~V}$
A similar process can be used for configuring an external rail-to-rail output op amp, such as the OPA335. Because the OPA335 op amp can swing down to OV using a pulldown resistor, R_{P}, connected to -5 V (for details, refer to the OPA335 data sheet, available for download at www.ti.com), the scaling factor is $2.5 \mathrm{~V} / 3 \mathrm{~V}$ and the corresponding $V_{\text {OFFSET }}$ is 3.3 V . This circuit configuration is shown in Figure 4b.

Figure 4. Operational Amplifier Configuration for Scaling and Offsetting the Output Going to ADC Stage.

ADVANTAGES OF DUAL-SUPPLY OPERATION

The LOG114 performs very well on a single +5 V supply by level-shifting pin 7 (Com) to half-supply and raising the common-mode voltage (pin 5, V_{CM} IN) of the input amplifiers. This level-shift places the input amplifiers in the linear operating range. However, there are also some advantages to operating the LOG114 on dual $\pm 5 \mathrm{~V}$ supplies. These advantages include:

1) eliminating the need for the +4.096 V precision reference;
2) eliminating a small additional source of error arising from the noise and temperature drift of the level-shifting voltage; and
3) allowing increased magnitude of a reverse bias voltage on the photodiode.

COM (PIN 7) VOLTAGE RANGE

The voltage on the Com pin is used to bias the differential amplifier, A_{3}, within its linear range. This voltage can provide an asymmetrical offset of the V LOGOUT voltage.

$\mathrm{V}_{\text {CM IN }}$ (Pin 5)

The $V_{\text {CMIN }}$ pin is used to bias the A_{1} and A_{2} amplifier into its common-mode input voltage range, $(\mathrm{V}-)+1.5 \mathrm{~V}$ to $(\mathrm{V}+)-1.5 \mathrm{~V}$.

INPUT CURRENT RANGE

To maintain specified accuracy, the input current range of the LOG114 should be limited from 100pA to 3.5 mA . Input currents outside of this range may compromise the LOG114 performance. Input currents larger than 3.5 mA result in increased nonlinearity. An absolute maximum input current rating of 10 mA is included to prevent excessive power dissipation that may damage the input transistor.

SBOS301A - MAY 2004 - REVISED MARCH 2007

SETTING THE REFERENCE CURRENT

When the LOG114 is used to compute logarithms, either l_{1} or l_{2} can be held constant to become the reference current to which the other is compared.
If $I_{\text {REF }}$ is set to the lowest current in the span of the signal current (as shown in the front page figure), $\mathrm{V}_{\text {LOGOUT }}$ will range from:
$\mathrm{V}_{\text {LOGOUT }}=0.375 \times \log _{10}\left(\frac{\mathrm{I}_{1} \min }{I_{1} \max \text { signal }}\right) \cong 0 \mathrm{~V}$
to some maximum value:
$\mathrm{V}_{\text {LOGOUT }}=0.375 \times \log _{10}\left(\frac{\mathrm{I}_{1} \min }{\mathrm{I}_{1} \text { max signal }}\right)$
While convenient, this approach does not usually result in best performance, because l_{1} min accuracy is difficult to achieve, particularly if it is $<20 \mathrm{nA}$.
A better way to achieve higher accuracy is to choose $I_{\text {REF }}$ to be in the center of the full signal range. For example, for a signal range of 1 nA to 1 mA , it is better to use this approach:

$$
\begin{equation*}
I_{\text {REF }}=I_{\text {SIGNAL }} \min \times \sqrt{1 \mathrm{~mA} / 1 \mathrm{nA}}=1 \mu \mathrm{~A} d \mathrm{c} \tag{16}
\end{equation*}
$$

than it is to set $I_{\text {REF }}=1 \mathrm{nA}$. It is much easier and more precise (that is, dc accuracy, temperature stability, and lower noise) to establish a 1 mA dc current level than a 1 nA level for the reference current.
The reference current may be derived from a voltage source with one or more resistors. When a single resistor is used, the value may be large depending on $I_{\text {REF }}$. If $I_{\text {REF }}$ is 10 nA and +2.5 V is used:

$$
\mathrm{R}_{\mathrm{REF}}=2.5 \mathrm{~V} / 10 \mathrm{nA}=250 \mathrm{M} \Omega
$$

A voltage divider may be used to reduce the value of the resistor, as shown in Figure 5. When using this method, one must consider the possible errors caused by the amplifier input offset voltage. The input offset voltage of amplifier A_{1} has a maximum value of 4 mV in $\mathrm{a} \pm 5 \mathrm{~V}$ sup-
ply system, and a maximum value of 7 mV in a +5 V supply system. Resistor temperature stability and noise contributions should also be considered.

Figure 5. T-Network for Reference Current.
$V_{\text {REF }}$ may be an external precision voltage reference, or the on-chip 2.5 V voltage reference of the LOG114.
$I_{\text {REF }}$ can be derived from an external current source, such as that shown in Figure 6.

Figure 6. Temperature-Compensated Current Source.

NEGATIVE INPUT CURRENTS

The LOG114 functions only with positive input currents (conventional current flows into input current pins). In
situations where negative input currents are needed, the example circuits in Figure 7, Figure 8, and Figure 9 may be used.

Figure 7. Current Inverter/Current Source.

Figure 8. Precision Current Inverter/Current Source.

Figure 9. Precision Current Inverter/Current Source.

VOLTAGE INPUTS

The LOG114 provides the best performance with current inputs. Voltage inputs may be handled directly by using a low-impedance voltage source with series resistors, but the dynamic input range is limited to approximately three decades of input voltage. This limitation exists because of the magnitude of the required input voltage and size of the corresponding series resistor. For 10 nA of input current, a 10 V voltage source and a $1 \mathrm{G} \Omega$ resistor would be required. Voltage and current
noise from these sources must be considered and can limit the usefulness of this technique.

APPLICATION CIRCUITS

log ratio

One of the more common uses of log ratio amplifiers is to measure absorbance. See Figure 10 for a typical application. Absorbance of the sample is $A=\log \lambda_{1} / \lambda_{1}$. If D_{1} and D_{2} are matched, $A \propto(0.375 \mathrm{~V}) \log \left(I_{1} / I_{2}\right)$.

NOTES: (1) $\mathrm{V}_{\text {LOGOUT }}=0.375 \times \log \left(\mathrm{I}_{1} / \mathrm{I}_{2}\right)$.
(2) $\mathrm{V}_{\mathrm{O} 4}=0.375 \times \mathrm{K} \times \log \left(\mathrm{I}_{1} / I_{2}\right)$
$K=1+R_{6} / R_{5}$

Figure 10. Using the LOG114 to Measure Absorbance.

DATA COMPRESSION

In many applications, the compressive effects of the logarithmic transfer function are useful. For example, a LOG114 preceding a 12 -bit ADC can produce the dynamic range equivalent to a 20 -bit converter. (Suggested products: ADS7818, ADS7834).

+3.3V OPERATION

For systems with only a +3.3 V power supply, the TPS60241 zero-ripple switched cap buck-boost 2.7 V to 5.5 V input to 5 V output converter may be used to generate a +5 V supply for the LOG114, as shown in Figure 11.
Likewise, the TPS6040 negative charge pump may be connected to the +5 V output of the TPS60241 to generate a -5 V supply to create a $\pm 5 \mathrm{~V}$ supply for the LOG114, as Figure 12 illustrates.

Figure 11. Creating a +5 V Supply from $\mathrm{a}+3.3 \mathrm{~V}$ Supply.

Figure 12. Creating a $\pm 5 \mathrm{~V}$ Supply from a +3.3 V Supply.

ERBIUM-DOPED FIBER OPTIC AMPLIFIER (EDFA)

The LOG114 was designed for optical networking systems. Figure 13 shows a block diagram of the LOG114 in a typical EDFA application. This application uses two log amps to measure the optical input and output power of the amplifier. A difference amplifier subtracts the log output signals of both log amps and applies an error voltage to the proportional-integral-derivative (PID) controller. The controller output adjusts a voltage-controlled current source $\left(\mathrm{V}_{\mathrm{CCS}}\right)$, which then drives the power op amp and pump laser. The desired optical gain is achieved when the error voltage at the PID is zero.
The log ratio function is the optical power gain of the EDFA. This circuitry forms an automatic power level control loop.

An alternate design of the system shown in Figure 13 is possible because the LOG114 inherently takes the \log ratio. Therefore, one log amp can be eliminated by connecting one of the photodiodes to the LOG114 I_{1} input, and the other to the I_{2} input. The differential amplifier would then be eliminated.
The LOG114 is uniquely suited for most EDFA applications because of its fast rise and fall times (typically less than $1 \mu \mathrm{~s}$ for a 100:1 current input step). It also measures a very wide dynamic range of up to eight decades.

Figure 13. Erbium-Doped Fiber Optic Amplifier (EDFA) block diagram.

INSIDE THE LOG114

The LOG114 uses two matched logarithmic amplifiers (A_{1} and A_{2} with logging diodes in the feedback loops) to generate the outputs $\log \left(\mathrm{I}_{1}\right)$ and $\log \left(\mathrm{I}_{2}\right)$, respectively. The gain of 6.25 differential amplifier $\left(\mathrm{A}_{3}\right)$ subtracts the output of A_{2} from the output of A_{1}, resulting in $\left[\log \left(I_{1}\right)\right.$ $\left.-\log \left(I_{2}\right)\right]$, or $\log \left(I_{1} / I_{2}\right)$. The symmetrical design of the A_{1} and A_{2} logarithmic amps allows I_{1} and I_{2} to be used interchangeably, and provides good bandwidth and phase characteristics with frequency.

DEFINITION OF TERMS

Transfer Function

The ideal transfer function of the LOG114 is:

$$
\begin{equation*}
\mathrm{V}_{\text {LOGOUT }}=0.375 \times \log \left(\frac{\mathrm{I}_{1}}{1_{2}}\right) \tag{17}
\end{equation*}
$$

This transfer function can be seen graphically in the typical characteristic curve, $V_{\text {LOGOUT }}$ vs $I_{\text {REF }}$.
When a pedestal, or offset, voltage ($\mathrm{V}_{\text {Com }}$) is connected to the Com pin, an additional offset term is introduced into the equation:
$\mathrm{V}_{\text {LOGOUT }}=0.375 \times \log \left(\frac{\mathrm{I}_{1}}{1_{2}}\right)+\mathrm{V}_{\text {Com }}$

Accuracy

Accuracy considerations for a log ratio amplifier are somewhat more complicated than for other amplifiers. This complexity exists because the transfer function is nonlinear and has two inputs, each of which can vary over a wide dynamic range. The accuracy for any combination of inputs is determined from the total error specification.

Total Error

The total error is the deviation of the actual output from the ideal output. Thus,
$\mathrm{V}_{\text {LOGOUT }}(\mathrm{ACTUAL})=\mathrm{V}_{\text {LOGOUT }}($ IDEAL $) \pm$ Total Error
It represents the sum of all the individual components of error normally associated with the log amp when operating in the current input mode. The worst-case error for any given ratio of I_{1} / I_{2} is the largest of the two errors when I_{1} and I_{2} are considered separately. Temperature can also affect total error.

Errors RTO and RTI

As with any transfer function, errors generated by the function may be Referred-to-Output (RTO) or Referred-to-Input (RTI). In this respect, log amps have a unique property: given some error voltage at the log amp output, that error corresponds to a constant percent of the input, regardless of the actual input level.

Log Conformity

For the LOG114, log conformity is calculated in the same way as linearity and is plotted as $\mathrm{I}_{1} / \mathrm{I}_{2}$ on a semilog scale. In many applications, log conformity is the most important specification. This condition is true because bias current errors are negligible (5pA for the LOG114), and the scale factor and offset errors may be trimmed to zero or removed by system calibration. These factors leave log conformity as the major source of error.

Log conformity is defined as the peak deviation from the best fit straight line of the VLOGOUT versus $\log \left(1_{1} / l_{2}\right)$ curve. Log conformity is then expressed as a percent of ideal full-scale output. Thus, the nonlinearity error expressed in volts over m decades is:
V LOGOUT $^{\text {(NONLIN }}$) $=0.375 \mathrm{~V} /$ decade $\bullet 2 \mathrm{Nm}$ where N is the log conformity error, in percent.

INDIVIDUAL ERROR COMPONENTS

The ideal transfer function with current input is:
$\mathrm{V}_{\text {LOGOUT IDEAL }}=0.375 \times \log \left(\frac{\mathrm{I}_{1}}{1_{2}}\right)$
The actual transfer function with the major components of error is:
$0.375(1 \pm \Delta \mathrm{K}) \times \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right) \pm 2 \mathrm{Nm} \pm \mathrm{V}_{\text {oso }}$
where:
$\Delta \mathrm{K}=$ gain error (0.4%, typ, as specified in the Electrical Characteristics table)
$\mathrm{I}_{\mathrm{B} 1}=$ bias current of A_{1} (5pA, typ)
$\mathrm{I}_{\mathrm{B} 2}=$ bias current of A_{2} (5pA, typ)
$m=$ number of decades over which the log conformity error is specified
$\mathrm{N}=\log$ conformity error (0.1%, typ for $\mathrm{m}=5$ decades; 0.9% typ for $m=7.5$ decades)
$\mathrm{V}_{\text {OSO }}=$ output offset voltage (11 mV , typ for $\pm 5 \mathrm{~V}$ supplies; 14 mV , typ for +5 V supplies)
To determine the typical error resulting from these error components, first compute the ideal output. Then calculate the output again, this time including the individual error components. Then determine the error in percent using Equation (21):
$\%$ error $=\frac{\left|\mathrm{V}_{\text {LOGOUT IDEAL }}-\mathrm{V}_{\text {LOGOUT TYP }}\right|}{\mathrm{V}_{\text {LOGOUTIEAL }}} \times 100 \%$

For example, in a system configured for measurement of five decades, with $I_{1}=1 \mathrm{~mA}$, and $\mathrm{I}_{2}=10 \mu \mathrm{~A}$:

$$
\begin{align*}
\mathrm{V}_{\text {LOGOUT IDEAL }} & =0.375 \times \log \left(\frac{10^{-3}}{10^{-5}}\right)=0.75 \mathrm{~V} \tag{22}\\
\mathrm{~V}_{\text {LOGOUT TYP }} & =0.375(1 \pm 0.004) \times \log \left(\frac{10^{-3}-5 \times 10^{-12}}{10^{-5}-5 \times 10^{-12}}\right) \\
& \pm 2(0.001)(5) \pm 0.011 \tag{23}
\end{align*}
$$

Using the positive error components ($+\Delta \mathrm{K},+2 \mathrm{Nm}$, and $+\mathrm{V}_{\text {OSO }}$) to calculate the maximum typical output:
$\mathrm{V}_{\text {LOGOUT TYP }}=0.774 \mathrm{~V}$
Therefore, the error in percent is:
$\%$ error $=\frac{|0.75-0.774|}{0.75} \times 100 \%=3.2 \%$

QFN PACKAGE

The LOG114 comes in a QFN-16 package. This leadless package has lead contacts on all four sides of the bottom of the package, thereby maximizing board space. An exposed leadframe die pad on the bottom of the package enhances thermal and electrical characteristics.
QFN packages are physically small, have a smaller routing area, improved thermal performance, and improved electrical parasitics. Additionally, the absence of external leads eliminates bent-lead issues.

The QFN package can be easily mounted using standard printed circuit board (PCB) assembly techniques. See Application Note QFN/SON PCB Attachment (SLUA271) and Application Report Quad Flatpack NoLead Logic Packages (SCBA017), both available for download at www.ti.com.
The exposed leadframe die pad on the bottom of the package should be connected to V -.

QFN LAYOUT GUIDELINES

The exposed leadframe die pad on the QFN package should be soldered to a thermal pad on the PCB. A mechanical drawing showing an example layout is attached at the end of this data sheet. Refinements to this layout may be necessary based on assembly process requirements. Mechanical drawings located at the end of this data sheet list the physical dimensions for the package and pad. The five holes in the landing pattern are optional, and are intended for use with thermal vias that connect the leadframe die pad to the heatsink area on the PCB.
Soldering the exposed pad significantly improves board-level reliability during temperature cycling, key push, package shear, and similar board-level tests. Even with applications that have low-power dissipation, the exposed pad must be soldered to the PCB to provide structural integrity and long-term reliability.

INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LOG114AIRGVR	ACTIVE	VQFN	RGV	16	2500	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	0 to 70	$\begin{aligned} & \hline \text { LOG } \\ & 114 \end{aligned}$	Samples
LOG114AIRGVRG4	ACTIVE	VQFN	RGV	16	2500	TBD	Call TI	Call TI	0 to 70		Samples
LOG114AIRGVT	ACTIVE	VQFN	RGV	16	250	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	0 to 70	$\begin{aligned} & \hline \text { LOG } \\ & 114 \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
LOG114AIRGVR	VQFN	RGV	16	2500	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
LOG114AIRGVT	VQFN	RGV	16	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LOG114AIRGVR	VQFN	RGV	16	2500	356.0	356.0	35.0
LOG114AIRGVT	VQFN	RGV	16	250	210.0	185.0	35.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

[^0]㯖 TEXAS
INSTRUMENTS
www.ti.com

RGV (S-PVQFN-N16)

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

NOTE: All linear dimensions are in millimeters

RGV (S-PVQFN-N16) PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 B. This drawing is subject to change without notice.
 C. Quad Flatpack, No-leads (QFN) package configuration.
 D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 F. Falls within JEDEC MO-220.

