

1.8-V OPERATIONAL AMPLIFIERS WITH RAIL-TO-RAIL INPUT AND OUTPUT

Check for Samples: LMV931-Q1, LMV932-Q1, LMV934-Q1

FEATURES

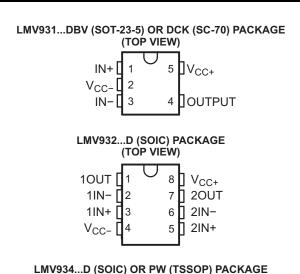
- Qualified for Automotive Applications
- 1.8-V, 2.7-V, and 5-V Specifications
- Rail-to-Rail Output Swing
 - 600-Ω Load: 80 mV From Rail
 - 2-kΩ Load: 30 mV From Rail
- V_{ICR}: 200 mV Beyond Rails
- Gain Bandwidth: 1.4 MHz
- Supply Current: 100 μA/Amplifier
- Max V_{IO}: 4 mV
- Space-Saving Packages
 - LMV931: SOT-23 and SC-70
 - LMV932: SOICLMV934: SOIC

APPLICATIONS

- Industrial (Utility/Energy Metering)
- Automotive
- Communications (Optical Telecom, Data/Voice Cable Modems)
- Consumer Electronics (PDAs, PCs, CD-R/W, Portable Audio)
- Supply-Current Monitoring
- Battery Monitoring

DESCRIPTION

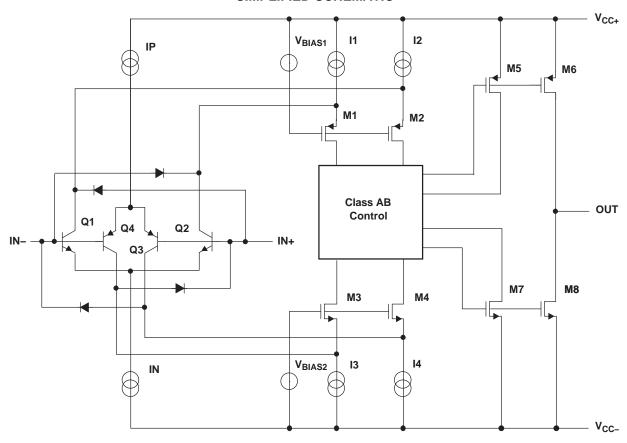
The LMV93x devices are low-voltage low-power operational amplifiers that are well suited for today's low-voltage and/or portable applications. Specified for operation of 1.8 V to 5 V, they can be used in portable applications that are powered from a single-cell Li-ion or two-cell batteries. They have rail-to-rail input and output capability for maximum signal swings in low-voltage applications. The LMV93x input common-mode voltage extends 200 mV beyond the rails for increased flexibility. The output can swing rail-to-rail unloaded and typically can reach 80 mV from the rails, while driving a $600-\Omega$ load (at 1.8-V operation).


During 1.8-V operation, the devices typically consume a quiescent current of 103 μ A per channel, and yet they are able to achieve excellent electrical specifications, such as 101-dB open-loop DC gain and 1.4-MHz gain bandwidth. Furthermore, the amplifiers offer good output drive characteristics, with the ability to drive a 600- Ω load and 1000-pF capacitance with minimal ringing.

The LMV93x devices are offered in the latest packaging technology to meet the most demanding space-constraint applications. The LMV931 is offered in standard SOT-23 and SC-70 packages. The LMV932 is available in the traditional SOIC package. The LMV934 is available in the traditional SOIC package and the TSSOP package.

The LMV93x devices are characterized for operation from –40°C to 125°C, making the part universally suited for commercial, industrial, and automotive applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



ORDERING INFORMATION⁽¹⁾

T _A		PACKAGE ⁽²	2)	ORDERABLE PART NUMBER	TOP-SIDE MARKING (3)
	Cinalo	SOT-23 - DBV	Reel of 3000	LMV931QDBVRQ1	RBB_
	Single	SC-70 - DCK	Reel of 3000	LMV931QDCKRQ1	RB_
-40°C to 125°C	Dual	SOIC - D	Reel of 2500	LMV932QDRQ1	MV932Q
	0	SOIC - D	Reel of 2500	LMV934QDRQ1	LMV934Q
	Quad	TSSOP - PW	Reel of 2000	LVM934QPWRQ1	LMV934Q

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
- (3) DBV/DCK: The actual top-side marking has one additional character that designates the wafer fab/assembly site.

SIMPLIFIED SCHEMATIC

ABSOLUTE MAXIMUM RATINGS(1)

over free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V _{CC+} – V _{CC-}	Supply voltage ⁽²⁾			5.5	V	
V _{ID}	Differential input voltage (3)		Supply	Supply voltage		
VI	Input voltage range, either input		V _{CC} 0.2	V _{CC+} + 0.2	V	
	Duration of output short circuit (one amplifier) to V _{CC±} (4) (5)	5)	Unlin	nited		
		D package (8 pin)		97		
		D package (14 pin)		86		
θ_{JA}	Package thermal impedance (5) (6)	DBV package		206	°C/W	
		DCK package		252		
		PW package		112.6		
T _J	Operating virtual junction temperature			150	°C	
T _{stg}	Storage temperature range		-65	150	°C	

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.
- (3) Differential voltages are at IN+ with respect to IN-.
- (4) Applies to both single-supply and split-supply operation. Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability.
- (5) Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (6) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
V_{CC}	Supply voltage (V _{CC+} – V _{CC} –)	1.8	5	V
TA	Operating free-air temperature	-40	125	°C

ESD PROTECTION

			TYP	UNIT	
Human-Body Model			2000	V	
Machine Model			200	V	
Charmad Davisa Madel	LM\/0240D\\/D04	All pins	500	500	
Charged-Device Model	LMV934QPWRQ1	Corner Pins	750	V	

ELECTRICAL CHARACTERISTICS

 $V_{CC+} = 1.8 \text{ V}, V_{CC-} = 0 \text{ V}, V_{IC} = V_{CC+}/2, V_O = V_{CC+}/2, R_L > 1 \text{ M}\Omega$ (unless otherwise noted)

	PARAMETER		$V_{CC+}/2$, $V_O = V_{CC+}/2$, F TEST COND		T _A	MIN	TYP	MAX	UNIT	
			110/004 (; ; ; ;)		25°C		1	4		
			LMV931 (single)		Full range			6		
V _{IO}	Input offset vo	ıtage	LAN (000 (L. 1) LATI (0	00.4 (1)	25°C		1	5.5	mV	
			LMV932 (dual), LMV9	34 (quad)	Full range			7.5		
γVIO	Average temporal coefficient of involtage				25°C		5.5		μV/°C	
			$V_{IC} = V_{CC+} - 0.8 \text{ V}$		25°C		15	35		
IB	Input bias curr	ent			25°C			65	nA	
					Full range			75		
					25°C		13	25		
Ю	Input offset cu	rrent			Full range			40	nA	
	Supply current	i			25°C		103	185		
СС	(per channel)	•			Full range			205	μΑ	
					25°C	60	78			
CMDD	ARR Common-mode rejection		$0 \le V_{IC} \le 0.6 \text{ V}, 1.4 \text{ V}$	≤ V _{IC} ≤ 1.8 V	-40°C to 85°C	55			4ID	
CMRR	ratio	,	$0.2 \le V_{IC} \le 0.6 \text{ V}, 1.4$	V ≤ V _{IC} ≤ 1.6 V	-40°C to 125°C	55			dB	
			$-0.2 \le V_{IC} \le 0 \text{ V}, 1.8 \text{ V}$	V ≤ V _{IC} ≤ 2 V	25°C	50	72			
1-	Supply-voltage rejection ratio		40.77.77	0.5.1/	25°C	72	100		٦D	
SVR			1.8 $V \le V_{CC+} \le 5 V, V$	_{IC} = 0.5 V	Full range	65			dB	
					25°C	V _{CC} 0.2	-0.2 to 2.1	$V_{CC+} + 0.2$		
V_{ICR}	Common-mode input voltage range		CMRR ≥ 50 dB		–40°C to 85°C	V _{CC} -		V _{CC+}	V	
	venage range				–40°C to 125°C	V _{CC} -+ 0.2		V _{CC+} – 0.2		
				$R_L = 600 \Omega$ to 0.9 V	25°C Full range	77 73	101			
		LMV931		$R_1 = 2 k\Omega$	25°C	80	105			
	Large-signal		$V_O = 0.2 \text{ V to } 1.6 \text{ V},$	to 0.9 V	Full range	75				
A_{V}	voltage gain		$V_{IC} = 0.5 \text{ V}$	R _L = 600 Ω	25°C	75	90		dB	
		LMV932,		to 0.9 V	Full range	72				
		LMV932,		$R_L = 2 k\Omega$	25°C	78	100			
				to 0.9 V	Full range	75				
		1			25°C	1.65	1.72			
			$R_L = 600 \Omega \text{ to } 0.9 \text{ V},$	High level	Full range	1.63				
			$V_{ID} = \pm 100 \text{ mV}$		25°C		0.077	0.105		
				Low level	Full range			0.120		
V _O	Output swing				25°C	1.75	1.77		V	
			$R_1 = 2 k\Omega$ to 0.9 V,	High level	Full range	1.74				
			$V_{ID} = \pm 100 \text{ mV}$		25°C		0.024	0.035		
				Low level	Full range			0.040		
			V _O = 0 V,		25°C	4	8			
	Output short-c	ircuit	$V_{ID} = 0 \text{ V},$ $V_{ID} = 100 \text{ mV}$	Sourcing	Full range	3.3				
os	current	ii ouit	$V_{O} = 1.8 \text{ V},$ $V_{ID} = -100 \text{ mV}$ Sinking		25°C	7	9		mA	
					Full range	5				
GBW	Gain bandwidt	h product			25°C		1.4		MHz	

 $V_{CC+} = 1.8 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{IC} = V_{CC+}/2$, $V_{O} = V_{CC+}/2$, $R_{I} > 1 \text{ M}\Omega$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP M	AX UNIT
SR	Slew rate ⁽¹⁾		25°C	0.35	V/µs
Φ_{m}	Phase margin		25°C	67	0
	Gain margin		25°C	7	dB
V_n	Equivalent input noise voltage	f = 1 kHz, V _{IC} = 0.5 V	25°C	60	nV/√ Hz
In	Equivalent input noise current	f = 1 kHz	25°C	0.06	pA/√Hz
THD	Total harmonic distortion	$ f = 1 \text{ kHz}, \ A_V = 1, \ R_L = 600 \ \Omega, $ $V_{ID} = 1 \ V_{p\text{-}p} $	25°C	0.023	%
	Amplifier-to-amplifier isolation (2)		25°C	123	dB

⁽¹⁾ Number specified is the slower of the positive and negative slew rates.

⁽²⁾ Input referred, V_{CC+} = 5 V and R_L = 100 kΩ connected to 2.5 V. Each amplifier is excited, in turn, with a 1-kHz signal to produce V_O = 3 V_{p-p}.

ELECTRICAL CHARACTERISTICS

 $V_{CC+} = 2.7 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{IC} = V_{CC+}/2$, $V_O = V_{CC+}/2$, and $R_L > 1 \text{ M}\Omega$ (unless otherwise noted)

	PARAMETER	<u> </u>	TEST CONDI	TIONS	T _A	MIN	TYP	MAX	UNIT	
			LM(004 (all all all all all all all all all al		25°C		1	4		
		U =	LMV931 (single)		Full range			6		
V _{IO}	Input offset vol	Itage			25°C		1	5.5	mV	
			LMV932 (dual), LMV93	34 (quad)	Full range			7.5		
α_{VIO}	Average temper coefficient of involtage				25°C		5.5		μV/°C	
	-		$V_{IC} = V_{CC+} - 0.8 \text{ V}$		25°C		15	35		
I _{IB}	Input bias curr	ent			25°C			65	nA	
					Full range			75		
					25°C		8	25		
Ю	Input offset cu	rrent			Full range			40	nA	
	Supply current				25°C		105	190		
lcc	(per channel)				Full range			210	μA	
		25°C 60 81								
	Common-mode rejection		$0 \le V_{IC} \le 1.5 \text{ V}, 2.3 \text{ V} \le V_{IC} \le 2.7 \text{ V}$		-40°C to 85°C	55				
CMRR ratio		0.2 ≤ V _{IC} ≤ 1.5 V, 2.3 \	/ ≤ V _{IC} ≤ 2.5 V	-40°C to 125°C	55			dB		
			$-0.2 \le V_{IC} \le 0 \text{ V}, 2.7 \text{ V}$	' ≤ V _{IC} ≤ 2.9 V	25°C	50	74			
	Supply-voltage rejection		401/41/	0.5.1/	25°C	72	100		-10	
SVR	ratio	,	$1.8 \text{ V} \le \text{V}_{\text{CC+}} \le 5 \text{ V}, \text{V}_{\text{IC}}$	c = 0.5 V	Full range	65			dB	
					V _{CC} 0.2	-0.2 to 3	V _{CC+} + 0.2			
V _{ICR}	, Common-mode input		CMRR ≥ 50 dB		-40°C to 85°C	V _{CC} -		V _{CC+}	V	
	vollage range				–40°C to 125°C	V _{CC} + 0.2		V _{CC+} – 0.2		
				$R_L = 600 \Omega$	25°C	87	104			
		LMV931		to 1.35 V	Full range	86				
		LIVIV 951		$R_L = 2 k\Omega$	25°C	92	110			
A_V	Large-signal		$V_0 = 0.2 \text{ V to } 2.5 \text{ V}$	to 1.35 V	Full range	91			dB	
~∨	voltage gain		VO = 0.2 V to 2.3 V	$R_L = 600 \Omega$	25°C	78	90		uБ	
		LMV932,		to 1.35 V	Full range	75				
		LMV934		$R_L = 2 k\Omega$	25°C	81	100			
				to 1.35 V	Full range	78				
-				High level	25°C	2.55	2.62		-	
			$R_L = 600 \Omega \text{ to } 1.35 \text{ V},$	i ligit level	Full range	2.53				
			$V_{ID} = \pm 100 \text{ mV}$	Low lovel	25°C		0.083	0.11		
\/	Output swing			Low level	Full range			0.13	V	
Vo	Output Swing			High layel	25°C	2.65	2.675		V	
			$R_L = 2 k\Omega \text{ to } 1.35 \text{ V},$	High level	Full range	2.64				
			$V_{ID} = \pm 100 \text{ mV}$		25°C		0.025	0.04	İ	
				Low level	Full range			0.045		
			$V_O = 0 V$,	Coursi	25°C	20	30		mΛ	
	Output short-c	ircuit	$V_{ID} = 100 \text{ mV}$	Sourcing	Full range	15				
los	current		$V_0 = 2.7 \text{ V},$ Sinking		25°C	18	25		mA	
			SHIKIIU	Full range	12					
GBW	Gain bandwidt	h product		1	25°C		1.4		MHz	

 $V_{CC+} = 2.7 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{IC} = V_{CC+}/2$, $V_O = V_{CC+}/2$, and $R_L > 1 \text{ M}\Omega$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
SR	Slew rate ⁽¹⁾		25°C	0.4		V/µs
Φ _m	Phase margin		25°C	70		0
	Gain margin		25°C	7.5		dB
V _n	Equivalent input noise voltage	f = 1 kHz, V _{IC} = 0.5 V	25°C	57		nV/√ Hz
In	Equivalent input noise current	f = 1 kHz	25°C	0.082		pA/√ Hz
THD	Total harmonic distortion	$f = 1 \text{ kHz}, A_V = 1, R_L = 600 \Omega, \ V_{ID} = 1 V_{p-p}$	25°C	0.022		%
	Amplifier-to-amplifier isolation (2)		25°C	123		dB

⁽¹⁾ Number specified is the slower of the positive and negative slew rates.

⁽²⁾ Input referred, V_{CC+} = 5 V and R_L = 100 kΩ connected to 2.5 V. Each amplifier is excited, in turn, with a 1-kHz signal to produce V_O = 3 V_{p-p}.

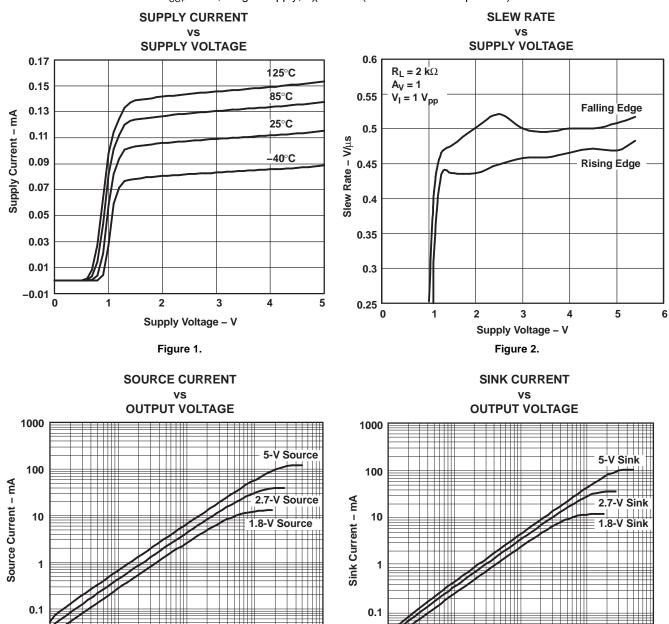
ELECTRICAL CHARACTERISTICS

 V_{CC+} = 5 V, V_{CC-} = 0 V, V_{IC} = $V_{CC+}/2$, V_O = $V_{CC+}/2$, and R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	₹	TEST CONDI	TIONS	T _A	MIN	TYP	MAX	UNIT	
			1111/004 (; 1)		25°C		1	4		
			LMV931 (single)		Full range			6	.,	
V_{IO}	Input offset ve	oltage	111/1000 (1 1) 111/100		25°C		1	5.5	mV	
			LMV932 (dual), LMV93	34 (quad)	Full range			7.5		
α_{VIO}	Average temposers coefficient of offset voltage	input			25°C		5.5		μV/°C	
			$V_{IC} = V_{CC+} - 0.8 \text{ V}$		25°C		15	35		
I _{IB}	Input bias cui	rrent	10 001		25°C			65	nA	
	•				Full range			75		
					25°C		9	25		
Ю	Input offset c	urrent			Full range			40	nA	
					25°C		116	210		
	Supply currer	nt	LMV931		Full range			230	-	
СС	(per channel)				25°C		116	225	μΑ	
			LMV932, LMV934		Full range			275		
					25°C	60	86			
			$0 \le V_{IC} \le 3.8 \text{ V}, 4.6 \text{ V} \le$	≤ V _{IC} ≤ 5 V	-40°C to					
CMDD	Common-mo	de		.0	85°C	55			٩D	
CMRR	rejection ratio)	0.3 ≤ V _{IC} ≤ 3.8 V, 4.6 V	/ ≤ V _{IC} ≤ 4.7 V	-40°C to 125°C	55			dB	
			$-0.2 \le V_{IC} \le 0 \text{ V}, 5 \text{ V} \le$	$V_{IC} \le 5.2 \text{ V}$	25°C	50	78			
L	Supply-voltag	ie	401/41/451/11	0.5.1/	25°C	72	100		-10	
SVR	rejection ratio		$1.8 \text{ V} \le \text{V}_{\text{CC+}} \le 5 \text{ V}, \text{V}_{\text{IC}} = 0.5 \text{ V}$		Full range	65			dB	
					25°C	V _{CC} 0.2	-0.2 to 5.3	V _{CC+} + 0.2		
V _{ICR}	Common-mo		CMRR ≥ 50 dB		–40°C to 85°C	V _{CC} -		V _{CC+}	V	
	voltage range	,			–40°C to 125°C	V _{CC} -+ 0.3		V _{CC+} - 0.3		
				$R_L = 600 \Omega$	25°C	88	102			
		LMV931		to 2.5 V	Full range	87				
		LIVIV931		$R_L = 2 k\Omega$	25°C	94	113			
^	Large-signal		V 00V/+= 40V/	to 2.5 V	Full range	93			4D	
A_{\bigvee}	voltage gain		$V_0 = 0.2 \text{ V to } 4.8 \text{ V}$	$R_L = 600 \Omega$	25°C	81	90		dB	
		LMV932,		to 2.5 V	Full range	78				
		LMV934		$R_L = 2 k\Omega$	25°C	85	100			
				to 2.5 V	Full range	82				
		•		LP-2 1	25°C	4.855	4.89			
			$R_1 = 600 \Omega \text{ to } 2.5 \text{ V},$	High level	Full range	4.835				
	Output swing		$V_{ID} = \pm 100 \text{ mV}$		25°C		0.12	0.16		
			Low level	Full range			0.18			
/ ₀				25°C	4.945	4.967		V		
			$R_1 = 2 \text{ kO to } 2.5 \text{ V}$	High level	Full range	4.935			=	
		F \	$V_{ID} = \pm 100 \text{ mV}$ Low level	25°C		0.037	0.065	-		
				Full range			0.075			

 $V_{CC+} = 5 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{IC} = V_{CC+}/2$, $V_{O} = V_{CC-}/2$, and $R_L > 1 \text{ M}\Omega$ (unless otherwise noted)

	PARAMETE	₹	TEST COND	ITIONS	T _A	MIN	TYP	MAX	UNIT
			$V_O = 0 V$,	Coursing	25°C	80	100		
		LMV931	$V_{ID} = 100 \text{ mV}$	Sourcing	Full range	68			
		LIVIV931	$V_0 = 5 V$,	Sinking	25°C	58	65		
	Output short-circuit		$V_{ID} = -100 \text{ mV}$	Siriking	Full range	45			A
I _{OS}	current		$V_O = 0 V$,	Sourcing	25°C	75	100		mA
		LMV932,	$V_{ID} = 100 \text{ mV}$	Sourcing	Full range	68			
		LMV934	$V_0 = 5 V$,	Sinking	25°C	50	65		
			$V_{ID} = -100 \text{ mV}$	Siriking	Full range		60		
GBW	GBW Gain bandwidth product				25°C		1.5		MHz
SR	Slew rate ⁽¹⁾				25°C		0.42		V/µs
Φ_{m}	Phase margi	n			25°C		71		0
	Gain margin				25°C		8		dB
V _n	Equivalent input noise voltage		f = 1 kHz, V _{IC} = 0.5 V	,	25°C		50		nV/√ Hz
In	Equivalent input noise current		f = 1 kHz		25°C		0.07		pA/√ Hz
THD	Total harmonic distortion		= 600 Ω,	25°C		0.022		%	
	Amplifier-to-a isolation (2)	Amplifier-to-amplifier			25°C		123		dB


⁽¹⁾ Number specified is the slower of the positive and negative slew rates.

⁽²⁾ Input referred, V_{CC+} = 5 V and R_L = 100 kΩ connected to 2.5 V. Each amplifier is excited, in turn, with a 1-kHz signal to produce V_O = 3 V_{p-p}.

TYPICAL CHARACTERISTICS

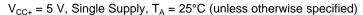
 $V_{CC+} = 5 \text{ V}$, Single Supply, $T_A = 25^{\circ}\text{C}$ (unless otherwise specified)

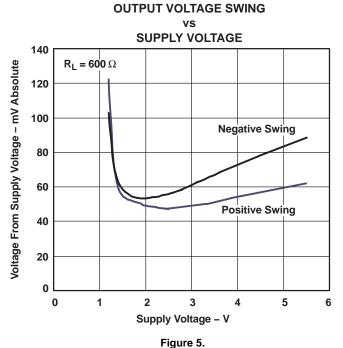
Output Voltage Referenced to V_+ (V) Figure 3.

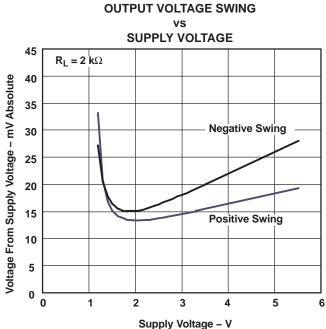
0.1

0.001 0.01 0.1 1
Output Voltage Referenced to V- (V)
Figure 4.

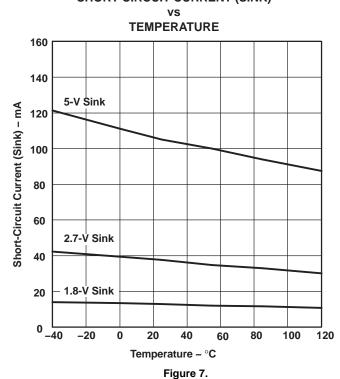
0.01


10


0.01


0.01

10



SHORT-CIRCUIT CURRENT (SINK)

SHORT-CIRCUIT CURRENT (SOURCE)

Figure 6.

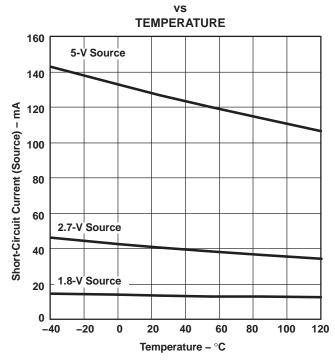
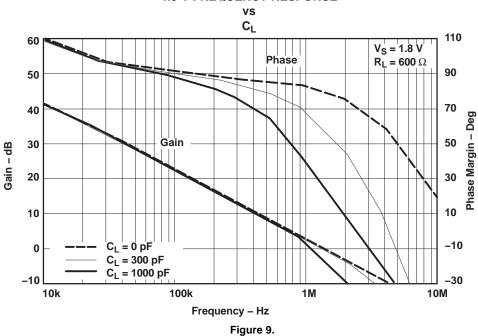



Figure 8.

 $V_{CC+} = 5 \text{ V}$, Single Supply, $T_A = 25^{\circ}\text{C}$ (unless otherwise specified)

1.8-V FREQUENCY RESPONSE

5-V FREQUENCY RESPONSE

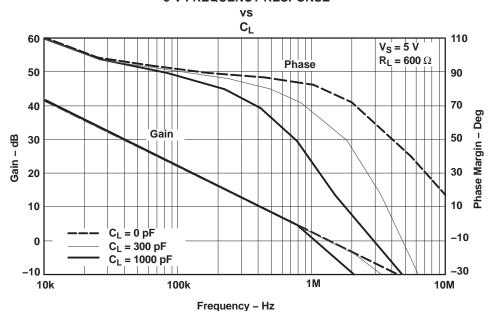
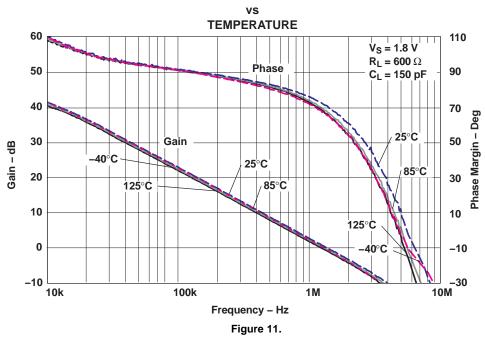



Figure 10.

 $V_{CC+} = 5 \text{ V}$, Single Supply, $T_A = 25^{\circ}\text{C}$ (unless otherwise specified)

1.8-V FREQUENCY RESPONSE

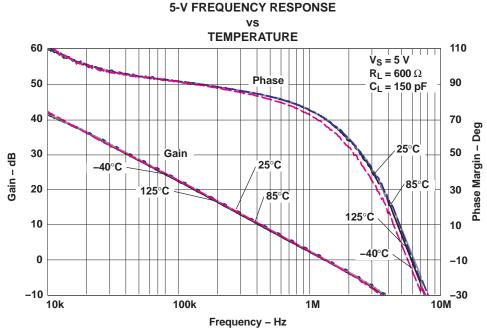
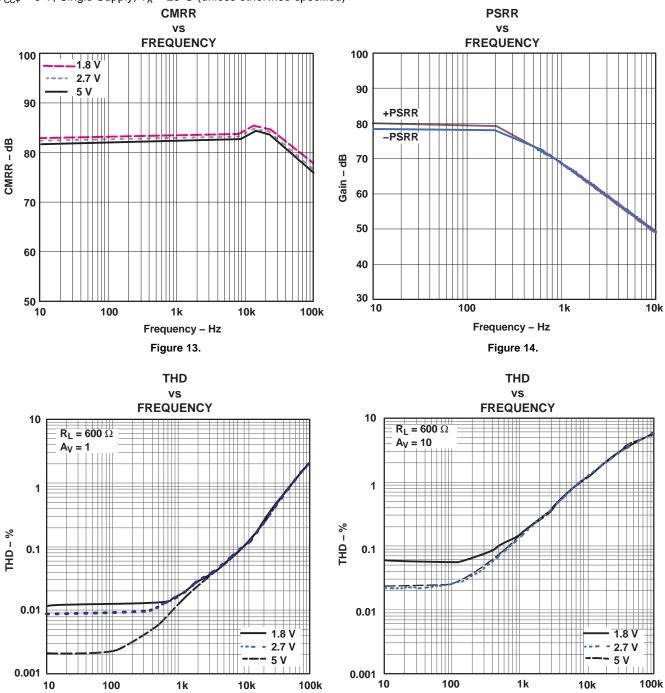



Figure 12.

 $V_{CC+} = 5 \text{ V}$, Single Supply, $T_A = 25^{\circ}\text{C}$ (unless otherwise specified)

Frequency - Hz

Figure 15.

Frequency - Hz

Figure 16.

0.05

0

-0.05 60.0--0.1 hbut Voltage

-0.15

-0.2

-0.25

Input

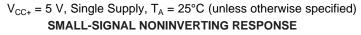
SMALL-SIGNAL NONINVERTING RESPONSE

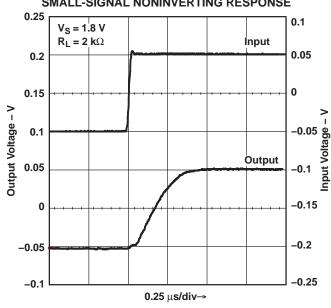
TYPICAL CHARACTERISTICS (continued)

0.25

0.2

0.15

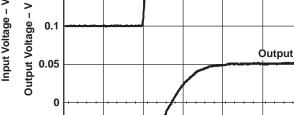

0.1


-0.05

-0.1

 $V_{S} = 2.7 V$

 $R_L = 2 k\Omega$



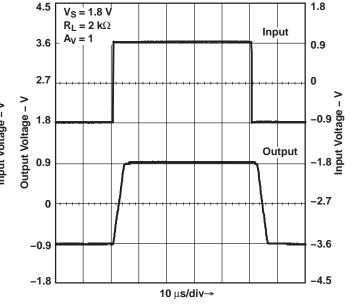


Figure 17.

0.25 μs/div→

LARGE-SIGNAL NONINVERTING RESPONSE

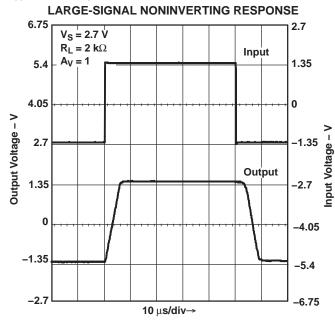

Figure 18.

Figure 19.

Figure 20.

LARGE-SIGNAL NONINVERTING RESPONSE

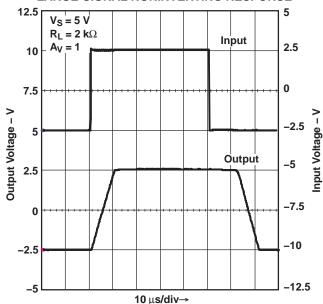
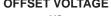
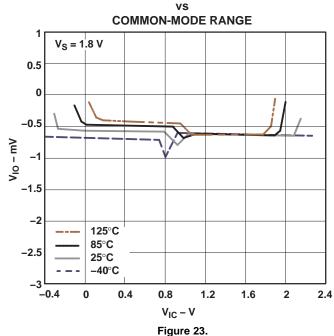
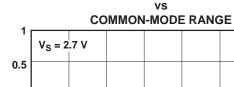




Figure 21.



OFFSET VOLTAGE

OFFSET VOLTAGE

Figure 22.

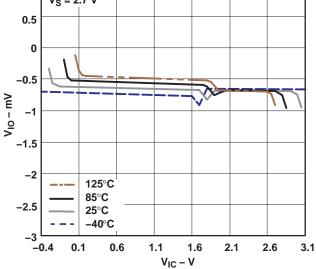
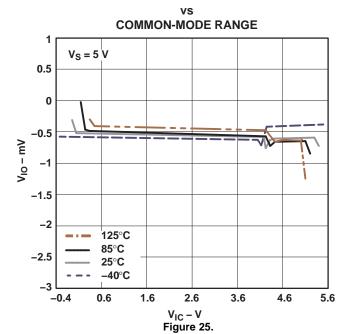



Figure 24.

 $V_{CC+} = 5 \text{ V}$, Single Supply, $T_A = 25^{\circ}\text{C}$ (unless otherwise specified)

OFFSET VOLTAGE

7-Feb-2012

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
LMV931QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV931QDCKRQ1	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV932QDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV934QDRQ1	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV934QPWRQ1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

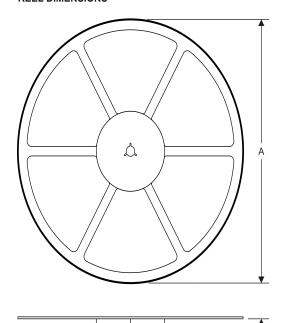
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

7-Feb-2012

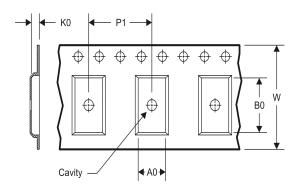
OTHER QUALIFIED VERSIONS OF LMV931-Q1, LMV932-Q1, LMV934-Q1:

Catalog: LMV931, LMV932, LMV934

NOTE: Qualified Version Definitions:

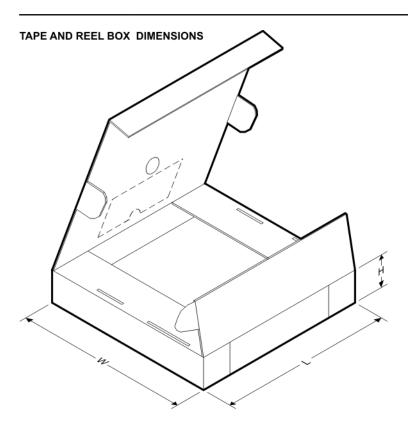

Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

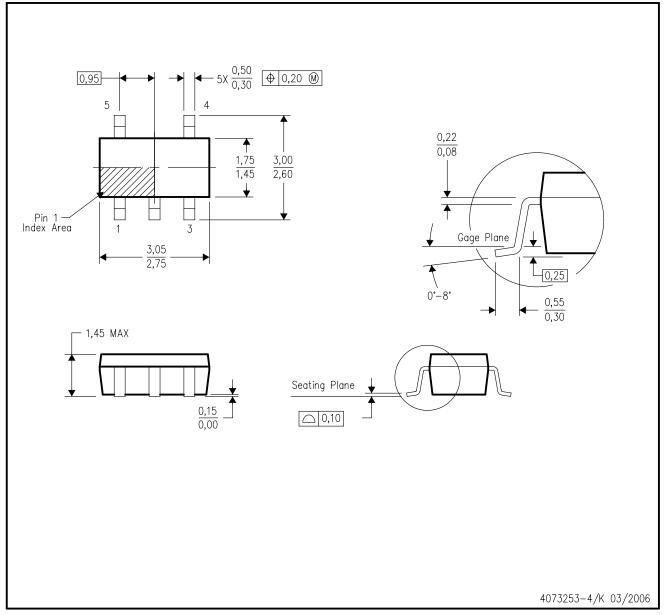

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMV932QDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LMV934QDRQ1	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LMV934QPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 14-Jul-2012

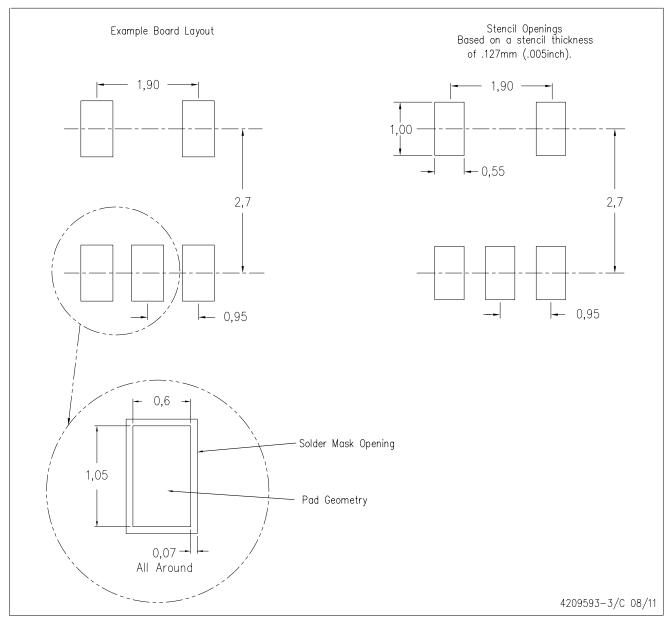


*All dimensions are nominal

7 til dillionorio di o mominar								
Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
LMV932QDRQ1	SOIC	D	8	2500	340.5	338.1	20.6	
LMV934QDRQ1	SOIC	D	14	2500	367.0	367.0	38.0	
LMV934QPWRQ1	TSSOP	PW	14	2000	367.0	367.0	35.0	

DBV (R-PDSO-G5)

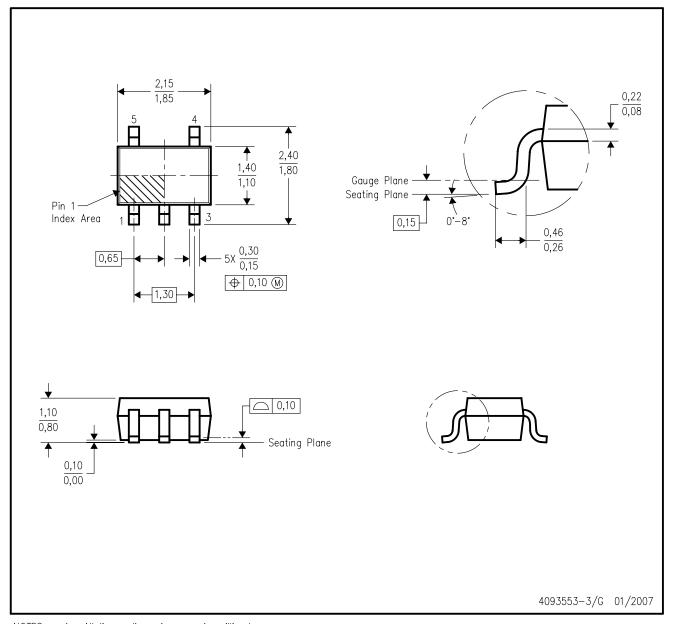
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

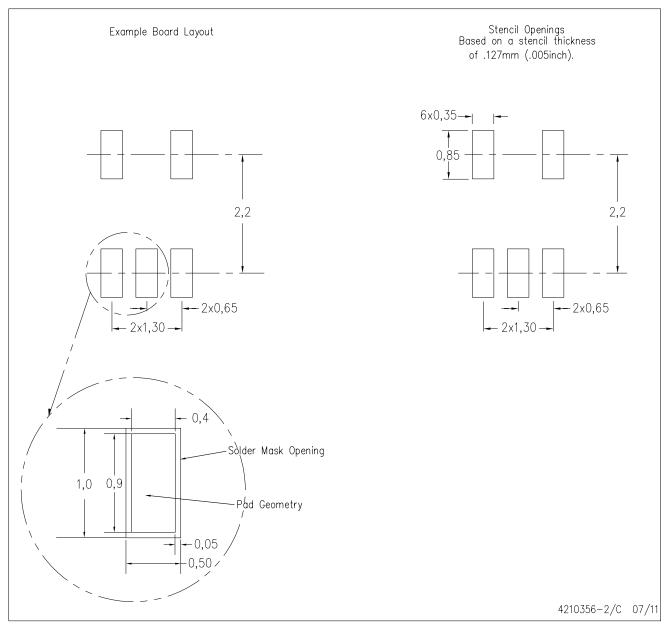
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G5)

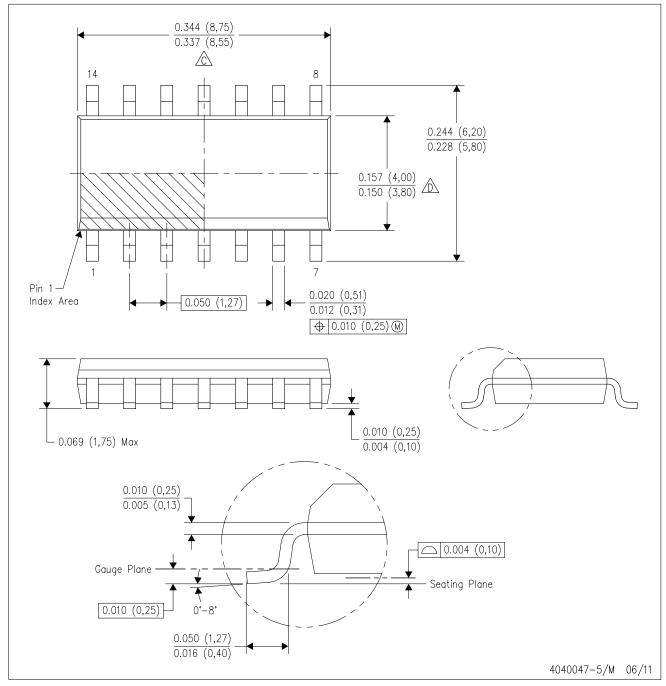
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

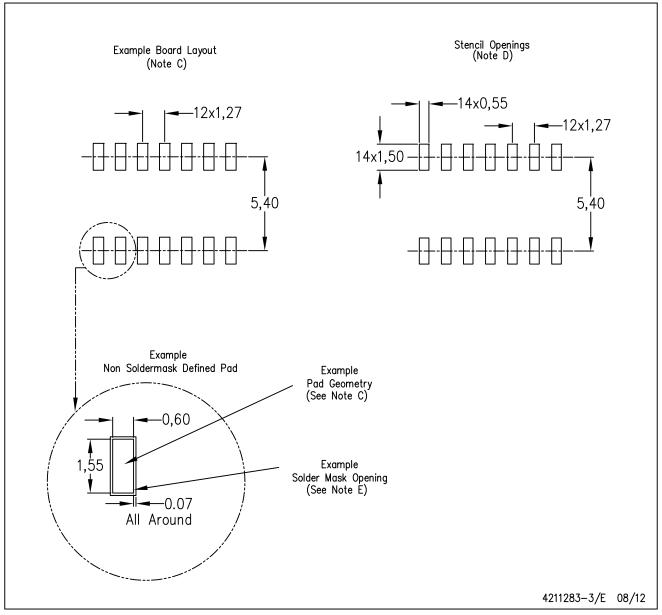
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

D (R-PDSO-G14)

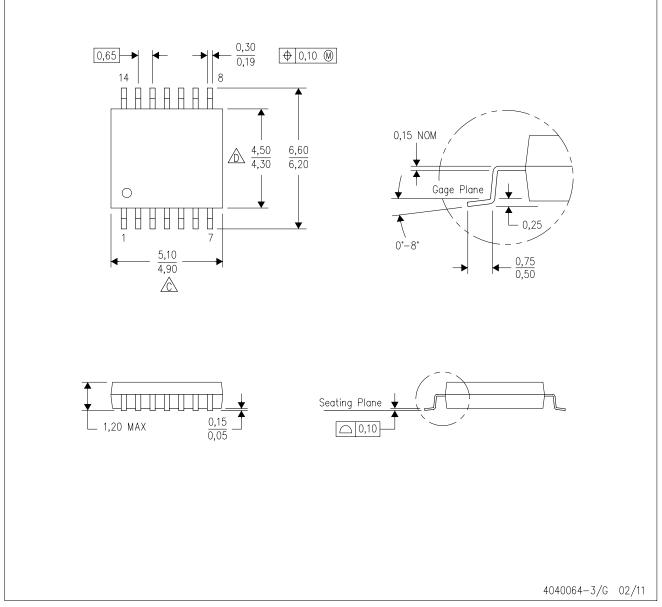
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

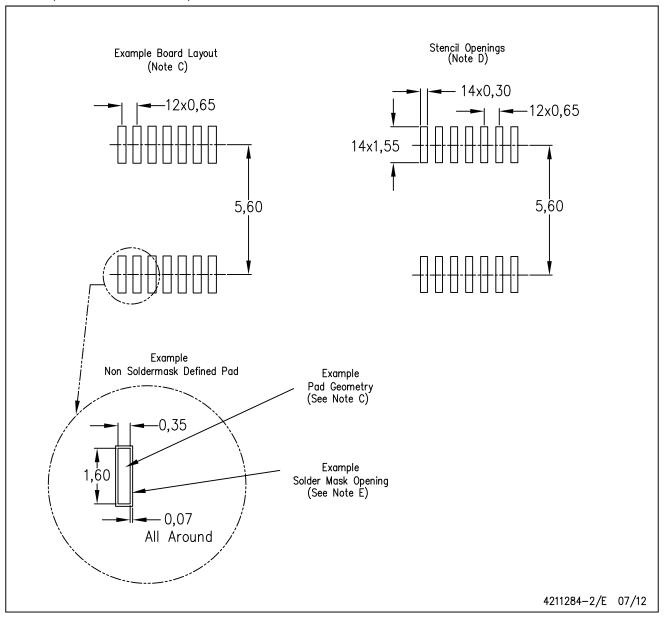
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
 - Sody length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

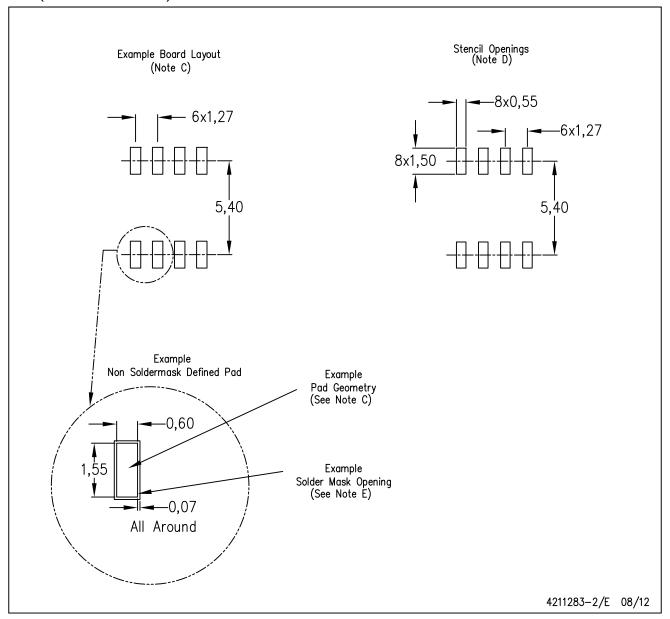
PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products Applications

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps

DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface Medical www.ti.com/medical interface.ti.com Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>