National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

LMH6640 TFT-LCD Single, 16V Rail-to-Rail High Output Operational Amplifier

General Description

The LMH™6640 is a voltage feedback operational amplifier with a rail-to-rail output drive capability of 100 mA. Employing National's patented VIP10 process, the LMH6640 delivers a bandwidth of 190 MHz at a current consumption of only 4mA. An input common mode voltage range extending to 0.3V below the V− and to within 0.9V of V⁺, makes the LMH6640 a true single supply op-amp. The output voltage range extends to within 100 mV of either supply rail providing the user with a dynamic range that is especially desirable in low voltage applications.

The LMH6640 offers a slew rate of 170 V/ μ s resulting in a full power bandwidth of approximately 28 MHz with 5V single supply (2 V $_{\rm PP}$, -1 dB). Careful attention has been paid to ensure device stability under all operating voltages and modes. The result is a very well behaved frequency response characteristic for any gain setting including +1, and excellent specifications for driving video cables including total harmonic distortion of -64 dBc @ 5 MHz, differential gain of 0.12% and differential phase of 0.12°.

Features

 $(V_S=16V,\,R_L=2~k\Omega$ to V+/2, 25°C, Typical Values Unless Specified)

Supply current (no load)	4 mA
Output resistance (closed loop 1 MHz)	0.35Ω

■ -3 dB BW (A_V = 1) 190 MHz ■ Settling time (±0.1%, 2 V_{PP}) 35 ns

■ Input common mode voltage -0.3V to 15.1V

Output voltage swing
 Linear output current
 ±100 mA

■ Total harmonic distortion (2 V_{PP}, 5 MHz) —64 dBc

■ Fully characterized for: 5V & 16V

No output phase reversal with CMVR exceeded

Differential gain (R_L = 150Ω)
 Differential phase (R_L = 150Ω)
 0.12°
 0.12°

Applications

- TFT panel V_{COM} buffer amplifier
- Active filters
- CD/DVD ROM
- ADC buffer amplifier
- Portable video
- Current sense buffer

Typical Application

Typical Application as a TFT Panel V_{COM} Driver

LMH™ is a trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)

Human Body Model 2 KV

Machine Model 200V

V_{IN} Differential ±2.5V

Input Current ±10 mA

Supply Voltages (V⁺ – V⁻) 18V

Voltage at Input/Output Pins V⁺ +0.8V, V⁻ –0.8V

Storage Temperature Range –65°C to +150°C

Junction Temperature (Note 4) +150°C

Soldering Information

Infrared or Convection (20 sec.) 235°C

Wave Soldering (10 sec.) 260°C

Operating Ratings (Note 3)

Supply Voltage (V $^+$ – V $^-$) 4.5V to 16V Operating Temperature Range -40°C to $+85^{\circ}\text{C}$

(Note 4)

Package Thermal Resistance (Note 4)

5-Pin SOT23 265°C/W

5V Electrical Characteristics

Unless otherwise specified, All limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$ and $R_L = 2 \text{ k}\Omega$ to $V^+/2$. **Boldface** limits apply at temperature extremes. (Note 9)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
				(Note 6)	(Note 5)	(Note 6)	
BW	-3 dB Bandwidth	$A_V = +1 \ (R_L = 100\Omega)$			150		MHz
		$A_V = -1 \ (R_L = 100\Omega)$			58		
BW _{0.1 dB}	0.1 dB Gain Flatness	$A_V = -3$			18		MHz
FPBW	Full Power Bandwidth	A _V = +1, V _{OUT} = 2 V _{PP} , -1 dB			28		MHz
LSBW	-3 dB Bandwidth	$A_V = +1, V_O = 2 V_{PP} (R_L = 100\Omega)$			32		MHz
GBW	Gain Bandwidth Product	$A_V = +1$, $(R_L = 100\Omega)$			59		MHz
SR	Slew Rate (Note 8)	A _V = -1			170		V/µs
e _n	Input Referred Voltage Noise		f = 10 kHz		23		nV/
			f = 1 MHz		15		√Hz
in	Input Referred Current Noise		f = 10 kHz		1.1		pA/
			f = 1 MHz		0.7		√Hz
THD	Total Harmonic Distortion	f = 5 MHz, V _O = 2 V _{PP} , A _V :	= +2		-65		-ID-
		$R_L = 1 \text{ k}\Omega \text{ to V}^+/2$					dBc
t _s	Settling Time	$V_O = 2 V_{PP}, \pm 0.1\%, A_V = -1$			35		ns
Vos	Input Offset Voltage				1 5		mV
						7	
I _B	Input Bias Current (Note 7)				-1.2	-2.6	
						-3.25	μΑ
los	Input Offset Current				34	800	nA
						1400	IIA
CMVR	Common Mode Input Voltage	CMRR ≥ 50 dB			-0.3	-0.2	v
	Range					-0.1	
				4.0	4.1		
				3.6			
CMRR	Common Mode Rejection Ratio	$V^- \le V_{CM} \le V^+ -1.5V$		72	90		dB
A_{VOL}	Large Signal Voltage Gain	$V_O = 4 V_{PP}$, $R_L = 2 k\Omega$ to $V^+/2$		86	95		
				82			dB
		$V_{\rm O}$ = 3.75 $V_{\rm PP}$, $R_{\rm L}$ = 150 Ω to V+/2		74	78		
				70			
V_{O}	Output Swing High	$R_L = 2 \text{ k}\Omega \text{ to V}^+/2$		4.90	4.94		V
		$R_L = 150\Omega$ to V+/2		4.75	4.80		
	Output Swing Low	$R_L = 2 k\Omega$ to V+/2			0.06	0.10	
		$R_L = 150\Omega \text{ to V}^{+}/2$			0.20	0.25	

www.national.com 2