12-Bit, 40MHz Sampling ANALOG-TO-DIGITAL CONVERTER

FEATURES

- LOW POWER: 390mW
- INTERNAL REFERENCE
- WIDEBAND TRACK-AND-HOLD: 65MHz
- SINGLE +5V SUPPLY

APPLICATIONS

- IF AND BASEBAND DIGITIZATION
- DIGITAL COMMUNICATIONS
- ULTRASOUND IMAGING
- GAMMA CAMERAS
- TEST INSTRUMENTATION
- CCD IMAGING

Copiers
Scanners

Cameras

- VIDEO DIGITIZING

DESCRIPTION

The ADS800 is a low-power, monolithic 12-bit, 40 MHz Ana-log-to-Digital (A/D) converter utilizing a small geometry CMOS process. This complete converter includes a 12-bit quantizer, wideband track-and-hold, reference, and three-state outputs. It operates from a single +5 V power supply and can be configured to accept either differential or single-ended input signals.
The ADS800 employs digital error correction to provide excellent Nyquist differential linearity performance for demanding imaging applications. Its low distortion, high SNR, and high oversampling capability give it the extra margin needed for telecommunications, test instrumentation, and video applications.
This high-performance A/D converter is specified over temperature for $A C$ and DC performance at a 40 MHz sampling rate. The ADS800 is available in an SO-28 package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^0]INSTRUMENTS

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

NOTE: (1) Stresses above these ratings may permanently damage the device.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION(1)

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	$\begin{gathered} \text { SPECIFIED } \\ \text { TEMPERATURE } \\ \text { RANGE } \end{gathered}$	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
ADS800U	SO-28	DW	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ADS800U	ADS800U	Rails, 28

NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the Tl website at www.ti.com.

ELECTRICAL CHARACTERISTICS

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=40 \mathrm{MHz}$, and with a 50% duty cycle clock having a 2 ns rise-and-fall time, unless otherwise noted.

PARAMETER	CONDITIONS	TEMP	ADS800U			UNITS
			MIN	TYP	MAX	
Resolution Specified Temperature Range Operating Temperature Range	$\mathrm{T}_{\text {Ambient }}$ $\mathrm{T}_{\text {AMBIENT }}$		$\begin{gathered} 0 \\ -40 \end{gathered}$	12	$\begin{aligned} & +70 \\ & +85 \end{aligned}$	$\begin{aligned} & \text { Bits } \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
ANALOG INPUT Differential Full-Scale Input Range Common-Mode Voltage Analog Input Bandwidth (-3 dB) Small-Signal Full-Power Input Impedance	Both Inputs, 180° Out-of-Phase -20dBFS ${ }^{(1)}$ Input OdBFS Input	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	+1.25	$\begin{gathered} +2.25 \\ 400 \\ 65 \\ 1.25\|\mid 4 \end{gathered}$	+3.25	
DIGITAL INPUT Logic Family Convert Command	Start Conversion		TTL/HCT Compatible CMOS Falling Edge			
ACCURACY ${ }^{(2)}$ Gain Error Gain Drift Power-Supply Rejection of Gain Input Offset Error Power-Supply Rejection of Offset	$\begin{aligned} & \Delta+V_{S}= \pm 5 \% \\ & \Delta+V_{S}= \pm 5 \% \end{aligned}$	$\begin{gathered} \mathrm{f}_{\mathrm{S}}=2.5 \mathrm{MHz} \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \pm 0.4 \\ & \pm 0.6 \\ & \pm 95 \\ & 0.01 \\ & \pm 2.6 \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1.5 \\ & \pm 2.5 \\ & \\ & 0.15 \\ & \pm 3.5 \\ & 0.15 \end{aligned}$	$\begin{gathered} \% \\ \% \\ \text { ppm/ }{ }^{\circ} \mathrm{C} \\ \% \text { FSR/\% } \\ \% \\ \% \text { FSR/\% } \end{gathered}$
CONVERSION CHARACTERISTICS Sample Rate Data Latency			10k	6.5	40M	Sample/s Convert Cycle
DYNAMIC CHARACTERISTICS Differential Linearity Error $\begin{aligned} & f=500 \mathrm{kHz} \\ & f=12 \mathrm{MHz} \end{aligned}$ No Missing Codes Integral Linearity Error at $\mathrm{f}=500 \mathrm{kHz}$ Spurious-Free Dynamic Range (SFDR) $\mathrm{f}=500 \mathrm{kHz}$ (-1 dBFS input) $\mathrm{f}=12 \mathrm{MHz}(-1 \mathrm{dBFS}$ input $)$	$t_{H}=13 \mathrm{~ns}^{(3)}$ $t_{H}=13 n s^{(3)}$	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ +220^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 65 \\ & 60 \\ & 58 \\ & 55 \end{aligned}$	$\begin{gathered} \pm 0.6 \\ \pm 0.8 \\ \pm 0.4 \\ \pm 0.5 \\ \text { Tested } \\ \pm 1.9 \\ 72 \\ 66 \\ 61 \\ 61 \end{gathered}$	$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	LSB LSB LSB LSB LSB LSB dBFS dBFS dBFS dBFS

NOTES: (1) dBFS refers to dB below Full-Scale. (2) Percentage accuracies are referred to the internal A/D converter Full-Scale Range of $4 \mathrm{Vp}-\mathrm{p}$. (3) To assure DNL and no missing code performance, see timing diagram footnote 2. (4) IMD is referred to the larger of the two input signals. If referred to the peak envelope signal ($\approx 0 \mathrm{~dB}$), the intermodulation products will be 7 dB lower. (5) No "rollover" of bits.

ELECTRICAL CHARACTERISTICS (Cont.)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=40 \mathrm{MHz}$, and with a 50% duty cycle clock having a 2 ns rise-and-fall time, unless otherwise noted.

NOTES: (1) dBFS refers to dB below Full-Scale. (2) Percentage accuracies are referred to the internal A/D converter Full-Scale Range of $4 \mathrm{Vp}-\mathrm{p}$. (3) To assure DNL and no missing code performance, see timing diagram footnote 2. (4) IMD is referred to the larger of the two input signals. If referred to the peak envelope signal $(\approx 0 \mathrm{~dB})$, the intermodulation products will be 7 dB lower. (5) No "rollover" of bits.

PIN DESCRIPTIONS

PIN	DESIGNATOR	DESCRIPTION
1	GND	Ground
2	B1	Bit 1, Most Significant Bit
3	B2	Bit 2
4	B3	Bit 3
5	B4	Bit 4
6	B5	Bit 5
7	B6	Bit 6
8	B7	Bit 7
9	B8	Bit 8
10	B9	Bit 9
11	B10	Bit 10
12	B11	Bit 11
13	B12	Bit 12, Least Significant Bit
14	GND	Ground
15	$+\mathrm{V}_{\text {S }}$	+5V Power Supply
16	CLK	Convert Clock Input, 50\% Duty Cycle
17	$+\mathrm{V}_{\text {S }}$	+5V Power Supply
18	$\overline{\mathrm{OE}}$	HI: High Impedance State. LO or Floating: Normal Operation. Internal pull-down resistors.
19	MSBI	Most Significant Bit Inversion, HI: MSB inverted for complementary output. LO or Floating: Straight output. Internal pull-down resistors.
20	$+\mathrm{V}_{\text {S }}$	+5V Power Supply
21	REFB	Bottom Reference Bypass. For external bypassing of internal +1.25 V reference.
22	CM	Common-Mode Voltage. It is derived by (REFT + REFB)/2.
23	REFT	Top Reference Bypass. For external bypassing of internal +3.25 V reference.
24	$+\mathrm{V}_{\text {S }}$	+5V Power Supply
25	GND	Ground
26	IN	Input
27	$\overline{\mathrm{N}}$	Complementary Input
28	GND	Ground

TIMING DIAGRAM

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {CONV }}$	Convert Clock Period	25		$100 \mu \mathrm{~s}$	ns
t_{L}	Clock Pulse LOW	12	12.5		ns
t_{H}	Clock Pulse HIGH	$12^{(2)}$	12.5		ns
t_{D}	Aperture Delay	2		ns	
t_{1}	Data Hold Time, $\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	3.9			ns
t_{2}	New Data Delay Time, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \max$			12.5	ns

NOTES: (1) " "/" indicates the portion of the waveform that will stretch out at slower sample rates. (2) t_{H} must be 13 ns minimum if no missing codes is desired only for the conditions of $\mathrm{t}_{\mathrm{CONV}} \leq 28 \mathrm{~ns}$ and $\mathrm{f}_{\mathrm{IN}}<2 \mathrm{MHz}$.

TYPICAL CHARACTERISTICS

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=40 \mathrm{MHz}$, and with a 50% duty cycle clock having a 2 ns rise-and-fall time, unless otherwise noted.

TYPICAL CHARACTERISTICS (Cont.)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=40 \mathrm{MHz}$, and with a 50% duty cycle clock having a 2 ns rise-and-fall time, unless otherwise noted.

TYPICAL CHARACTERISTICS (Cont.)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=40 \mathrm{MHz}$, and with a 50% duty cycle clock having a 2 ns rise-and-fall time, unless otherwise noted.

DYNAMIC PERFORMANCE vs DIFFERENTIAL FULL-SCALE INPUT RANGE

signal-TO-NOISE RATIO vs TEMPERATURE

TYPICAL CHARACTERISTICS (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Sampling Rate $=40 \mathrm{MHz}$, and with a 50% duty cycle clock having a 2 ns rise-and-fall time, unless otherwise noted.

THEORY OF OPERATION

The ADS800 is a high-speed, sampling A/D converter with pipelining. It uses a fully differential architecture and digital error correction to ensure 12-bit resolution. The differential track-and-hold circuit is shown in Figure 1. The switches are controlled by an internal clock which has a non-overlapping 2 -phase signal, $\phi 1$ and $\phi 2$. At the sampling time, the input signal is sampled on the bottom plates of the input capacitors. In the next clock phase, $\phi 2$, the bottom plates of the input capacitors are connected together and the feedback capacitors are switched to the op amp output. At this time, the charge redistributes between C_{\mid}and C_{H}, completing one track-and-hold cycle. The differential output is a held DC representation of the analog input at the sample time. The track-and-hold circuit can also convert a single-ended input signal into a fully differential signal for the quantizer.

The pipelined quantizer architecture has 11 stages with each stage containing a 2-bit quantizer and a 2-bit Digital-toAnalog Converter (DAC), as shown in Figure 2. Each 2-bit quantizer stage converts on the edge of the sub-clock, which is twice the frequency of the externally applied clock. The output of each quantizer is fed into its own delay line to time-

FIGURE 1. Input Track-and-Hold Configuration with Timing Signals.

FIGURE 2. Pipeline A/D Converter Architecture.
align it with the data created from the following quantizer stages. This aligned data is fed into a digital error correction circuit which can adjust the output data based on the information found on the redundant bits. This technique gives the ADS800 excellent differential linearity and ensures no missing codes at the 12-bit level.
Since there are two pipeline stages per external clock cycle, there is a 6.5 clock cycle data latency from the start convert signal to the valid output data. The output data is available in Straight Offset Binary (SOB) or Binary Two's Complement (BTC) format.

THE ANALOG INPUT AND INTERNAL REFERENCE

The analog input of the ADS800 can be configured in various ways and driven with different circuits, depending on the nature of the signal and the level of performance desired. The ADS800 has an internal reference that sets the full-scale input range of the A / D converter. The differential input range has each input centered around the common-mode of +2.25 V , with each of the two inputs having a full-scale range of +1.25 V to +3.25 V . Since each input is $2 \mathrm{Vp}-\mathrm{p}$ and 180° out-of-phase with the other, a 4 V differential input signal to the quantizer results. As shown in Figure 3, the positive full-scale reference (REFT) and the negative full-scale (REFB) are brought out for external bypassing. In addition, the commonmode voltage (CM) may be used as a reference to provide the appropriate offset for the driving circuitry. However, care must be taken not to appreciably load this reference node. For more information regarding external references, singleended input, and ADS800 drive circuits, refer to the applications section.

FIGURE 3. Internal Reference Structure.

CLOCK REQUIREMENTS

The CLK pin accepts a CMOS level clock input. Both the rising and falling edges of the externally applied clock control the various interstage conversions in the pipeline. Therefore, the clock signal's jitter, rise-and-fall times, and duty cycle can affect conversion performance.

- Low clock jitter is critical to SNR performance in fre-quency-domain signal environments.
- Clock rise-and-fall times should be as short as possible (<2ns for best performance).
- For most applications, the clock duty should be set to 50%. However, for applications requiring no missing codes, a slight skew in the duty cycle will improve DNL performance for conversion rates $>35 \mathrm{MHz}$ and input frequencies $<2 \mathrm{MHz}$ (see Timing Diagram) in the SO package. For the best performance in the SSOP package, the clock should be skewed under all input frequencies with conversion rates $>35 \mathrm{MHz}$. A possible method for skewing the 50% duty cycle source is shown in Figure 4.

FIGURE 4. Clock Skew Circuit.

DIGITAL OUTPUT DATA

The 12-bit output data is provided at CMOS logic levels. The standard output coding is Straight Offset Binary (SOB) where a full-scale input signal corresponds to all " 1 ' s " at the output, as shown in Table 1. This condition is met with pin 19 "LO" or Floating due to an internal pull-down resistor. By applying a logic "Hl" voltage to this pin, a Binary Two's Complement (BTC) output will be provided where the most significant bit is inverted. The digital outputs of the ADS800 can be set to a high-impedance state by driving $\overline{\mathrm{OE}}$ (pin 18) with a logic "HI". Normal operation is achieved with pin 18 "LO" or Floating due to internal pull-down resistors. This function is provided for testability purposes and is not meant to drive digital buses directly or be dynamically changed during the conversion process.

	OUTPU	CODE
DIFFERENTIAL INPUT ${ }^{(1)}$	$\begin{array}{\|c\|} \hline \text { SOB } \\ \text { PIN } 19 \\ \text { FLOATING or LO } \end{array}$	
$+\mathrm{FS}(\mathrm{IN}=+3.25 \mathrm{~V}, \overline{\mathrm{IN}}=+1.25 \mathrm{~V})$	111111111111	011111111111
+FS - 1LSB	111111111111	011111111111
+FS - 2LSB	111111111110	011111111110
+3/4 Full-Scale	111000000000	011000000000
+1/2 Full-Scale	110000000000	010000000000
+1/4 Full-Scale	101000000000	001000000000
+1LSB	100000000001	000000000001
Bipolar Zero ($\mathrm{IN}=\overline{\mathrm{N}}=+2.25 \mathrm{~V}$)	100000000000	000000000000
-1LSB	011111111111	111111111111
-1/4 Full-Scale	011000000000	11100000000
-1/2 Full-Scale	010000000000	110000000000
-3/4 Full-Scale	001000000000	101000000000
-FS + 1LSB	000000000001	100000000001
-FS (IN = +1.25V, $\overline{\mathrm{IN}}=+3.25 \mathrm{~V}$)	00000000000	10000000000
NOTE: (1) In the single-ended input mode, $+\mathrm{FS}=+4.25 \mathrm{~V}$ and $-\mathrm{FS}=+0.25 \mathrm{~V}$.		

TABLE I. Coding Table for the ADS800.

APPLICATIONS

DRIVING THE ADS800

The ADS800 has a differential input with a common-mode of +2.25 V . For AC-coupled applications, the simplest way to create this differential input is to drive the primary winding of a transformer with a single-ended input. A differential output is created on the secondary if the center tap is tied to the common-mode voltage of +2.25 V , as per Figure 5. This transformer-coupled input arrangement provides good highfrequency AC performance. It is important to select a transformer that gives low distortion and does not exhibit core saturation at full-scale voltage levels. Since the transformer does not appreciably load the ladder, there is no need to buffer the Common-Mode (CM) output in this instance. In general, it is advisable to keep the current draw from the CM output pin below $0.5 \mu \mathrm{~A}$ to avoid nonlinearity in the internal reference ladder. A FET input operational amplifier such as the OPA130 can provide a buffered reference for driving external circuitry. The analog IN and $\overline{\mathrm{N}}$ inputs should be bypassed with 22 pF capacitors to minimize track-and-hold glitches and to improve high input frequency performance.
Figure 6 illustrates another possible low-cost interface circuit which utilizes resistors and capacitors in place of a transformer. Depending on the signal bandwidth, the component values should be carefully selected in order to maintain the

FIGURE 5. AC-Coupled Single-Ended to Differential Drive Circuit Using a Transformer.
product performance. The input capacitors, C_{IN}, and the input resistors, R_{IN}, create a high-pass filter with the lower corner frequency at $f_{C}=1 /\left(2 p R_{I N} C_{I N}\right)$. The corner frequency can be reduced by either increasing the value of $\mathrm{R}_{\mathbb{I N}}$ or $\mathrm{C}_{\mathbb{I N}}$. If the circuit operates with a 50Ω or 75Ω impedance level, the resistors are fixed and only the value of the capacitor can be increased. Usually, AC-coupling capacitors are electrolytic or tantalum capacitors with values of $1 \mu \mathrm{~F}$ or higher. It should be noted that these large capacitors become inductive with increased input frequency, which could lead to signal amplitude errors or oscillation. To maintain a low AC-coupling impedance throughout the signal band, a small value (e.g. $1 \mu \mathrm{~F})$ ceramic capacitor could be added in parallel with the polarized capacitor.
Capacitors $\mathrm{C}_{\mathrm{SH} 1}$ and $\mathrm{C}_{\mathrm{SH} 2}$ are used to minimize current glitches resulting from the switching in the input track-andhold stage and to improve signal-to-noise performance. These capacitors can also be used to establish a low-pass filter and effectively reduce the noise bandwidth. In order to create a real pole, resistors $\mathrm{R}_{\text {SER1 }}$ and $\mathrm{R}_{\text {SER2 }}$ were added in series with each input. The cutoff frequency of the filter is determined by $f_{C}=1 /\left(2 p R_{S E R} \cdot\left(C_{S H}+C_{A D C}\right)\right)$ where $R_{S E R}$ is the resistor in series with the input, $\mathrm{C}_{S H}$ is the external capacitor from the input to ground, and $C_{A D C}$ is the internal input capacitance of the A/D converter (typically 4 pF).
Resistors R_{1} and R_{2} are used to derive the necessary common-mode voltage from the buffered top and bottom references. The total load of the resistor string should be selected so that the current does not exceed 1 mA . Although the circuit in Figure 6 uses two resistors of equal value so that the common-mode voltage is centered between the top and bottom reference $(+2.25 \mathrm{~V})$, it is not necessary to do so. In all cases the center point, V_{CM}, should be bypassed to ground in order to provide a low-impedance AC ground.
If the signal needs to be DC coupled to the input of the ADS800, an operational amplifier input circuit is required. In the differential input mode, any single-ended signal must be modified to create a differential signal. This can be accomplished by

FIGURE 6. AC-Coupled Differential Input Circuit.
using two operational amplifiers, one in the noninverting mode for the input and the other amplifier in the inverting mode for the complementary input. The low distortion circuit in Figure 7 will provide the necessary input shifting required for signals centered around ground. It also employs a diode for output level shifting to ensure a low distortion +3.25 V output swing. Other amplifiers can be used in place of the OPA842s if the lowest distortion is not necessary. If output level shifting circuits are not used, care must be taken to select operational amplifiers that give the necessary performance when swinging to +3.25 V with a $\pm 5 \mathrm{~V}$ supply operational amplifier.
The ADS800 can also be configured with a single-ended input full-scale range of +0.25 V to +4.25 V by tying the complementary input to the common-mode reference volt-
age, as shown in Figure 8. This configuration will result in increased even-order harmonics, especially at higher input frequencies. However, this tradeoff may be quite acceptable for time-domain applications. The driving amplifier must give adequate performance with $\mathrm{a}+0.25 \mathrm{~V}$ to +4.25 V output swing in this case.

EXTERNAL REFERENCES AND ADJUSTMENT OF FULL-SCALE RANGE

The internal reference buffers are limited to approximately 1 mA of output current. As a result, these internal +1.25 V and +3.25 V references may be overridden by external references that have at least 18 mA (at room temperature) of output drive capability. In this instance, the common-mode voltage will be

FIGURE 7. A Low Distortion DC-Coupled, Single-Ended to Differential Input Driver Circuit.

Full Scale $=+0.25 \mathrm{~V}$ to +4.25 V with internal references.

FIGURE 8. Single-Ended Input Connection.
set halfway between the two references. This feature can be used to adjust the gain error, improve gain drift, or to change the full-scale input range of the ADS800. Changing the fullscale range to a lower value has the benefit of easing the swing requirements of external input drive amplifiers. The external references can vary as long as the value of the external top reference ($\mathrm{REFT}_{\text {EXT }}$) is less than or equal to +3.4 V , the value of the external bottom reference ($\mathrm{REFB}_{\mathrm{EXT}}$) is greater than or equal to +1.1 V , and the difference between the external references are greater than or equal to 1.5 V .
For the differential configuration, the full-scale input range will be set to the external reference values that are selected. For the single-ended mode, the input range is $2 \cdot\left(\right.$ REFT $\left._{\text {EXT }}-R E F B_{E X T}\right)$, with the common-mode being centered at $\left(\right.$ REFT $\left._{E X T}+\mathrm{REFB}_{E X T}\right) / 2$. Refer to the typical characteristics for "Expected Performance vs Full-Scale Input Range".

The circuit in Figure 10 works completely on a single +5 V supply. As a reference element, it uses the micro-power reference REF1004-2.5, which is set to a quiescent current of 0.1 mA . Amplifier A_{2} is configured as a follower to buffer the +1.25 V generated from the resistor divider. To provide the necessary current drive, a pull-down resistor, R_{p}, is added.

Amplifier A_{1} is configured as an adjustable gain stage, with a range of approximately 1 to 1.32 . The pull-up resistor again relieves the op amp from providing the full current drive. The value of the pull-up/down resistors is not critical and can be varied to optimize power consumption. The need for pull-up, pull-down resistors depends only on the drive capability of the selected drive amplifiers and thus can be omitted.

FIGURE 9. ADS800 Interface Schematic with AC-Coupling and External Buffers.

NOTE: (1) Use parts alternatively for adjustment capability.
FIGURE 10. Optional External Reference to Set the Full-Scale Range Utilizing a Dual, Single-Supply Op Amp.

PC BOARD LAYOUT AND BYPASSING

A well-designed, clean PC board layout will assure proper operation and clean spectral response. Proper grounding and bypassing, short lead lengths, and the use of ground planes are particularly important for high-frequency circuits. Multilayer PC boards are recommended for best performance but if carefully designed, a two-sided PC board with large, heavy ground planes can give excellent results. It is recommended that the analog and digital ground pins of the ADS800 be connected directly to the analog ground plane. In our experience, this gives the most consistent results. The A/D converter power-supply commons should be tied together at the analog ground plane. Power supplies should be bypassed with $0.1 \mu \mathrm{~F}$ ceramic capacitors as close to the pin as possible.

DYNAMIC PERFORMANCE TESTING

The ADS800 is a high performance converter and careful attention to test techniques is necessary to achieve accurate results. Highly accurate phase-locked signal sources allow high resolution FFT measurements to be made without using data windowing functions. A low jitter signal generator such as the HP8644A for the test signal, phase-locked with a low jitter

HP8022A pulse generator for the A/D converter clock, gives excellent results. Low-pass filtering (or bandpass filtering) of test signals is absolutely necessary to test the low distortion of the ADS800. Using a signal amplitude slightly lower than fullscale will allow a small amount of "headroom" so that noise or DC offset voltage will not over-range the A/D converter and cause clipping on signal peaks.

DYNAMIC PERFORMANCE DEFINITIONS

1. Signal-to-Noise-and-Distortion Ratio (SINAD):

$$
10 \log \frac{\text { Sinewave Signal Power }}{\text { Noise + Harmonic Power (first } 15 \text { harmonics) }}
$$

2. Signal-to-Noise Ratio (SNR):

$$
10 \log \frac{\text { Sinewave Signal Power }}{\text { Noise Power }}
$$

3. Intermodulation Distortion (IMD):

$$
10 \log \frac{\text { Highest IMD Pr oduct Power (to 5th - order) }}{\text { Sinewave Signal Power }}
$$

IMD is referenced to the larger of the test signals, f_{1} or f_{2}. Five "bins" either side of peak are used for calculation of fundamental and harmonic power. The " 0 " frequency bin (DC) is not included in these calculations as it is of little importance in dynamic signal processing applications.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
ADS800U	ACTIVE	SOIC	DW	28	20	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS800U	Samples
ADS800U/1K	ACTIVE	SOIC	DW	28	1000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS800U	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as " Pb -Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TeXAS

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADS800U/1K | SOIC | DW | 28 | 1000 | 330.0 | 32.4 | 11.35 | 18.67 | 3.1 | 16.0 | 32.0 | Q1 |

PACKAGE MATERIALS INFORMATION

*All dimensions are nomina

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS800U/1K	SOIC	DW	28	1000	350.0	350.0	66.0

TUBE

B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W $(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	B (mm)
ADS800U	DW	SOIC	28	20	506.98	12.7	4826	6.6

DW (R-PDSO-G28)
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AE.
DW (R-PDSO-G28)

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Refer to IPC7351 for alternate board design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: All trademarks are the property of their respective owners.

