Documents

ADS1284 High-Resolution, Analog-to-Digital Converter

1 Features

- Selectable Operating Modes
- Low-Power Mode:
- 12 mW (PGA = 1, 2, 4 and 8)
- 127 dB SNR ($250 \mathrm{SPS}, \mathrm{PGA}=1$)
- High-Resolution Mode:
- 18 mW (PGA = 1, 2, 4 and 8)
- 130 dB SNR ($250 \mathrm{SPS}, \mathrm{PGA}=1$)
- THD: -122 dB
- CMRR: 110 dB
- Two-Channel Multiplexer
- Inherently-Stable Modulator
- Fast Responding Overrange Detector
- Flexible Digital Filter:
- Sinc + FIR + IIR (Selectable)
- Linear or Minimum Phase Option
- Programmable High-Pass Filter
- Offset and Gain Calibration
- SYNC Input
- Analog Supply: 5 V or $\pm 2.5 \mathrm{~V}$
- Digital Supply: 1.8 V to 3.3 V

2 Applications

- Energy Exploration
- Seismic Monitoring
- High-Accuracy Instrumentation

3 Description

The ADS1284 is a high-performance, single-chip, analog-to-digital converter (ADC). This device includes a low-noise programmable gain amplifier (PGA), delta-sigma ($\Delta \Sigma$) modulator, and digital filter. The ADC supports two modes of operation with trade-offs between power and resolution.
The two-channel multiplexer has the inputs for signal measurement and an ADC signal test. A mode is available to short circuit the inputs and test for internal noise. The PGA has the high input impedance and low noise, which provides for the direct connection of geophone and hydrophone sensors.
The fourth-order, inherently stable modulator provides outstanding noise and linearity performance. The modulator output is filtered and decimated by the onchip digital filter to yield the ADC conversion result.
The digital filter provides data rates from 250 to 4000 SPS. The high-pass filter (HPF) has a programmable corner frequency. On-chip gain and offset scale registers support system calibration.
The synchronization input controls the timing of the ADC conversion. The power-down input puts the ADC into power-down mode.
The ADS1284 is available in a compact 24 -lead, 5 $\mathrm{mm} \times 4-\mathrm{mm}$ VQFN package, and is fully specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, with a maximum operating temperature range of $-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Device Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)
ADS1284	VQFN (24)	$5.00 \mathrm{~mm} \times 4.00 \mathrm{~mm}$

(1) For all available packages, see the package option addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History. 2
5 Pin Configuration and Functions 3
6 Specifications 4
6.1 Absolute Maximum Ratings 4
6.2 ESD Ratings 4
6.3 Recommended Operating Conditions 4
6.4 Thermal Information 5
6.5 Electrical Characteristics. 5
6.6 Timing Requirements 8
6.7 Switching Characteristics 8
6.8 Typical Characteristics. 9
7 Parameter Measurement Information 15
7.1 Noise Performance 15
8 Detailed Description 17
8.1 Overview 17
8.2 Functional Block Diagram 18
8.3 Feature Description 18
8.4 Device Functional Modes. 33
8.5 Programming. 45
8.6 Register Maps 49
9 Application and Implementation 53
9.1 Application Information. 53
9.2 Typical Applications 53
9.3 Initialization Set Up 56
10 Device and Documentation Support 57
10.1 Receiving Notification of Documentation Updates 57
10.2 Community Resources 57
10.3 Trademarks 57
10.4 Electrostatic Discharge Caution. 57
10.5 Glossary 57
11 Mechanical, Packaging, and Orderable Information 57

4 Revision History

Changes from Original (September 2018) to Revision A Page

- Changed document to release full version to web 1

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.		
AINN1	13	Analog input	Negative analog input 1
AINN2	11	Analog input	Negative analog input 2
AINP1	12	Analog input	Positive analog input 1
AINP2	10	Analog input	Positive analog input 2
AVDD	14	Analog supply	Positive analog power supply
AVSS	15	Analog supply	Negative analog power supply
BYPAS	22	Analog	1.8-V sub-regulator output: connect 1- $\mu \mathrm{F}$ capacitor to DGND
CAPN	8	Analog	PGA output: connect 10-nF capacitor from CAPP to CAPN
CAPP	9	Analog	PGA output: connect 10-nF capacitor from CAPP to CAPN
CLK	23	Digital input	Master clock input (4.096 MHz)
$\overline{\mathrm{CS}}$	4	Digital input	Serial interface chip select, active low
DGND	7	Ground	Digital ground (tie to digital ground plane)
DGND	21	Ground	Digital ground (tie to digital ground plane)
DIN	3	Digital input	Serial interface data input
DOUT	2	Digital output	Serial Interface data output
$\overline{\text { DRDY }}$	1	Digital output	Data ready output: active low
DVDD	20	Digital supply	Digital power supply. If DVDD <2.25 V, connect DVDD and BYPAS pins together.
MFLAG	6	Digital output	Modulator overrange flag: $0=$ normal, $1=$ modulator overrange
$\overline{\text { PWDN }}$	18	Digital input	Power-down input, active low
$\overline{\text { RESET }}$	19	Digital input	Reset input, active low
SCLK	24	Digital input	Serial interface shift clock input
SYNC	5	Digital input	Synchronize input, rising edge active
VREFN	16	Analog input	Negative reference input
VREFP	17	Analog input	Positive reference input
Thermal pad			Do not electrically connect the thermal pad. The thermal pad must be soldered to PCB. Thermal pad vias are optional and can be removed.

ADS1284

SBAS943A -SEPTEMBER 2018-REVISED AUGUST 2019
www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings ${ }^{(1)}$

Over operating free-air temperature range (unless otherwise noted).

	MIN	MAX	UNIT
AVDD to AVSS	-0.3	5.5	V
AVSS to DGND	-2.8	0.3	V
DVDD to DGND	-0.3	3.9	V
Analog input voltage	AVSS - 0.3	AVDD + 0.3	V
Digital input voltage to DGND	-0.3	DVDD + 0.3	V
Input current, continuous	-10	10	mA
Operating temperature	-50	125	${ }^{\circ} \mathrm{C}$
Junction temperature		150	${ }^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {stg }}$	-60	150	${ }^{\circ} \mathrm{C}$

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

6.2 ESD Ratings

			VALUE	UNIT
	E	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	± 2000	V
$V_{\text {(ESD) }}$	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ${ }^{(2)}$	± 500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
POWER SUPPLY					
AVSS	Negative analog supply (relative to DGND)	-2.6		0	V
AVDD	Positive analog supply (relative to AVSS)	AVSS + 4.75		AVSS + 5.25	V
DVDD	Digital supply (relative to DGND)	1.65		3.6	V
ANALOG INPUTS					
FSR	Full-scale input voltage range ($\mathrm{V}_{\text {IN }}=$ AINP - AINN $)$	$\pm \mathrm{V}_{\text {REF }} /(2 \times \mathrm{PGA})$			V
	Calibration margin ${ }^{(1)}$			106	\%FSR
AINP or AINN	Absolute input voltage range	AVSS + 0.7		AVDD - 1.25	V
VOLTAGE REFERENCE INPUTS					
	Reference input voltage ($\mathrm{V}_{\text {REF }}=$ VREFP -VREFN)	1	5	AVDD - AVSS + 0.2	V
VREFN	Negative reference input	AVSS - 0.1		VREFP - 1	V
VREFP	Positive reference input	VREFN + 1		AVDD + 0.1	V
DIGITAL INPUTS					
$\mathrm{V}_{\text {IH }}$	High-level input voltage	$0.8 \times$ DVDD		DVDD	V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	DGND		$0.2 \times$ DVDD	V
$\mathrm{f}_{\text {CLK }}$	Clock input	1		4.096	MHz
$\mathrm{f}_{\text {SCLK }}$	Serial clock rate			$\mathrm{f}_{\text {CLK }} / 2$	MHz
TEMPERATURE					
	Specified temperature	-40		85	${ }^{\circ} \mathrm{C}$

(1) Calibration margin is the maximum allowable input voltage after user calibration of offset and gain errors.

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		$\begin{gathered} \text { ADS1284 } \\ \hline \text { RHF (VQFN) } \\ \hline 24 \text { PINS } \end{gathered}$	UNIT
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	30.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JCC} \text { (top) }}$	Junction-to-case (top) thermal resistance	27.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	8.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
\%JT	Junction-to-top characterization parameter	0.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\psi_{\text {JB }}$	Junction-to-board characterization parameter	8.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \text { JC(bot) }}$	Junction-to-case (bottom) thermal resistance	1.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

maximum and minimum specifications over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; typical specifications at $25^{\circ} \mathrm{C}, \mathrm{AVDD}=2.5 \mathrm{~V}, \mathrm{AVSS}=-2.5 \mathrm{~V}$, $\mathrm{f}_{\mathrm{CLK}}=4.096 \mathrm{MHz}, \mathrm{VREFP}=2.5 \mathrm{~V}, \mathrm{VREFN}=-2.5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{PGA}=1$, High-Resolution and Low-Power modes, Offset enabled (75 mV), Chop enable, and $\mathrm{f}_{\text {DATA }}=1000$ SPS (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
ANALOG INPUTS					
	PGA input voltage noise density	Low-power mode	7.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		High-resolution mode	5		
	Differential input impedance ${ }^{(1)}$	CHOP enabled	1		G Ω
		CHOP disabled	100		
	Common-mode input impedance		1		$\mathrm{G} \Omega$
I_{B}	Input bias current		1		nA
	Crosstalk	$\mathrm{f}=31.25 \mathrm{~Hz}$	-135		dB
	Mux switch on-resistance	Each switch	30		Ω
PGA OUTPUT (CAPP, CAPN)					
	Absolute output range		AVSS + 0.4	AVDD - 0.4	V
	PGA output impedance	Differential	600		Ω
	Output impedance tolerance		$\pm 10 \%$		
	External bypass capacitance		10	100	nF
	Modulator input impedance	Low-power mode	110		k Ω
		High-resolution mode	55		
AC PERFORMANCE					
SNR	Signal-to-noise ratio ${ }^{(2)}$	Low-power mode	117		dB
		High-resolution mode	120 124		
THD	Total harmonic distortion ${ }^{(3)}$	Low-power mode			
		PGA $=1,2,4,8,16$	-122	-114	dB
		PGA $=32$	-117	-108	
		PGA $=64$	-114		
		High-resolution mode			
		PGA $=1,2,4,8,16$	-122	-114	dB
		PGA $=32$	-117	-110	
		PGA $=64$	-114		
SFDR	Spurious-free dynamic range		123		dB

(1) PGA chop mode is controlled by register setting.
(2) Inputs shorted; see Table 1 through Table 4 for more details.
(3) Input signal $=31.25 \mathrm{~Hz},-0.5 \mathrm{dBFS}$.

Electrical Characteristics (continued)

maximum and minimum specifications over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; typical specifications at $25^{\circ} \mathrm{C}, \mathrm{AVDD}=2.5 \mathrm{~V}$, $\mathrm{AVSS}=-2.5 \mathrm{~V}$, $\mathrm{f}_{\mathrm{CLK}}=4.096 \mathrm{MHz}, \mathrm{VREFP}=2.5 \mathrm{~V}, \mathrm{VREFN}=-2.5 \mathrm{~V}$, DVDD $=3.3 \mathrm{~V}, \mathrm{PGA}=1$, High-Resolution and Low-Power modes, Offset enabled (75 mV), Chop enable, and $\mathrm{f}_{\text {DATA }}=1000$ SPS (unless otherwise noted)

(4) Offset specification is input referred. The offset scales by the reference voltage ($\mathrm{V}_{\text {REF }}$).
(5) Calibration accuracy is on the level of noise reduced by four (calibration averages 16 readings).
(6) The PGA output impedance and the modulator input impedance results in systematic gain error.
(7) Gain match relative to gain $=1$.
(8) f_{CM} is the input common-mode frequency. f_{PS} is the power-supply frequency.
(9) Input frequencies in the range of $N \cdot \mathrm{f}_{\mathrm{CLK}} / 1024 \pm \mathrm{f}_{\mathrm{DATA}} / 2$ (where $N=1,2,3 \ldots$) can intermodulate with the modulator chopper clock (and N multiples). At these frequencies, intermodulation $=-120 \mathrm{~dB}$, typ.
(10) At dc; see Figure 50.

Electrical Characteristics (continued)

maximum and minimum specifications over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; typical specifications at $25^{\circ} \mathrm{C}, \mathrm{AVDD}=2.5 \mathrm{~V}$, $\mathrm{AVSS}=-2.5 \mathrm{~V}$, $\mathrm{f}_{\mathrm{CLK}}=4.096 \mathrm{MHz}, \mathrm{VREFP}=2.5 \mathrm{~V}, \mathrm{VREFN}=-2.5 \mathrm{~V}$, DVDD $=3.3 \mathrm{~V}, \mathrm{PGA}=1$, High-Resolution and Low-Power modes, Offset enabled (75 mV), Chop enable, and $\mathrm{f}_{\text {DATA }}=1000$ SPS (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INPUTS/OUTPUTS						
V_{OH}	High-level output voltage	$\mathrm{l}_{\mathrm{OH}}=1 \mathrm{~mA}$	$0.8 \times$ DVDD			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$			$0.2 \times$ DVDD	V
l_{kg}	Input leakage	$0<\mathrm{V}_{\text {DIGITAL }}$ IN $<$ DVDD			± 10	$\mu \mathrm{A}$
POWER SUPPLY						
IAVDD lavss	Analog supply current	Low-power mode				
		PGA $=1,2,4,8$		2	3.4	mA
		PGA $=16,32,64$		2.5	3.8	
		High-resolution mode				
		$\mathrm{PGA}=1,2,4,8$		3.2	5.5	mA
		PGA $=16,32,64$		4	6	
		Standby mode		1	15	$\mu \mathrm{A}$
		Power-down mode		1	15	
$\mathrm{I}_{\text {DVDD }}$	Digital supply current	Low-power mode		0.5	0.7	mA
		High-resolution mode		0.6	0.8	
		Standby mode		25	50	$\mu \mathrm{A}$
		Power-down mode ${ }^{(11)}$		1	15	
P_{D}	Power dissipation	Low-power mode				
		PGA $=1,2,4,8$		12	20	mW
		PGA $=16,32,64$		14	22	
		High-resolution mode				
		PGA $=1,2,4,8$		18	30	mW
		PGA $=16,32,64$		22	33	
		Standby mode		90	250	$\mu \mathrm{W}$
		Power-down mode		10	125	

(11) CLK input stopped.

6.6 Timing Requirements

at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and DVDD $=1.65 \mathrm{~V}$ to 3.6 V (unless otherwise noted)

		MIN	MAX
$t_{\text {CSSC }}$	$\overline{C S}$ low to SCLK high: setup time	40	
$t_{\text {SCLK }}$	SCLK period	2	ns
$\mathrm{t}_{\text {SPWH, }}$	SCLK pulse duration, high and low ${ }^{(1)}$	0.8	16
$\mathrm{t}_{\text {DIST }}$	DIN valid to SCLK high: setup time	50	$1 / \mathrm{f}_{\text {CLK }}$
$\mathrm{t}_{\text {DIHD }}$	Valid DIN to SCLK high: hold time	50	$1 / \mathrm{f}_{\text {CLK }}$
$\mathrm{t}_{\text {CSH }}$	$\overline{\mathrm{CS}}$ high pulse	100	ns
$\mathrm{t}_{\text {SCCS }}$	SCLK high to $\overline{\text { CS }}$ high	24	ns

(1) Holding SCLK low for $64 \overline{\mathrm{DRDY}}$ falling edges resets the serial interface.

6.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	
$t_{\text {CSDOD }}$	CS low to DOUT driven: propagation delay			60	ns	
$\mathrm{t}_{\text {DOPD }}$	SCLK low to valid new DOUT: propagation delay	Load on DOUT $=20 \mathrm{pF} \\| 100 \mathrm{k} \Omega$		100	ns	
$\mathrm{t}_{\text {DOHD }}$	SCLK low to DOUT invalid: hold time		0	ns		
$\mathrm{t}_{\text {CSDOZ }}$	$\overline{\mathrm{CS}}$ high to DOUT tristate			40	ns	

Figure 1. Serial Interface Timing Diagram

ADS1284
www.ti.com

6.8 Typical Characteristics

$\mathrm{At}+25^{\circ} \mathrm{C}, \mathrm{AVDD}=2.5 \mathrm{~V}, \mathrm{AVSS}=-2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=4.096 \mathrm{MHz}, \mathrm{VREFP}=2.5 \mathrm{~V}$, $\mathrm{VREFN}=-2.5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{PGA}=1$, High-Resolution Mode, OFFSET enabled, CHOP enabled, and $f_{\text {DATA }}=1000$ SPS (unless otherwise noted).

Figure 2. Output Spectrum

Figure 4. Output Spectrum

Figure 6. Output Spectrum

Figure 3. Output Spectrum (Low-Power mode)

Figure 5. Output Spectrum (Low-Power Mode)

Figure 7. Output Spectrum (Low-Power Mode)

Typical Characteristics (continued)

$\mathrm{At}+25^{\circ} \mathrm{C}, \mathrm{AVDD}=2.5 \mathrm{~V}, \mathrm{AVSS}=-2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=4.096 \mathrm{MHz}, \mathrm{VREFP}=2.5 \mathrm{~V}, \mathrm{VREFN}=-2.5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{PGA}=1$, High-Resolution Mode, OFFSET enabled, CHOP enabled, and $\mathrm{f}_{\text {DATA }}=1000$ SPS (unless otherwise noted).

Figure 8. Output Spectrum

Figure 10. Output Spectrum

Figure 12. Output Spectrum

Figure 9. Output Spectrum (Low-Power Mode)

Figure 11. Output Spectrum (Low-Power Mode)

Figure 13. Output Spectrum (Low-Power Mode)

ADS1284
www.ti.com

Typical Characteristics (continued)

$\mathrm{At}+25^{\circ} \mathrm{C}, \mathrm{AVDD}=2.5 \mathrm{~V}, \mathrm{AVSS}=-2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=4.096 \mathrm{MHz}, \mathrm{VREFP}=2.5 \mathrm{~V}, \mathrm{VREFN}=-2.5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{PGA}=1$, High-Resolution Mode, OFFSET enabled, CHOP enabled, and $f_{\text {DATA }}=1000$ SPS (unless otherwise noted).

Figure 14. Output Spectrum

Figure 16. THD vs Temperature

Figure 18. THD vs Signal Frequency

Figure 15. Output Spectrum

Figure 17. THD vs Temperature (Low-Power Mode)

Figure 19. CMR vs Common-Mode Frequency

Typical Characteristics (continued)

$\mathrm{At}+25^{\circ} \mathrm{C}, \mathrm{AVDD}=2.5 \mathrm{~V}, \mathrm{AVSS}=-2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=4.096 \mathrm{MHz}, \mathrm{VREFP}=2.5 \mathrm{~V}, \mathrm{VREFN}=-2.5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{PGA}=1$, High-Resolution Mode, OFFSET enabled, CHOP enabled, and $\mathrm{f}_{\text {DATA }}=1000$ SPS (unless otherwise noted).

Figure 20. PSR vs Power-Supply Frequency

Figure 22. Offset-Voltage Drift Histogram

Figure 24. Gain-Error Drift Histogram

Figure 21. Offset-Voltage Histogram

Figure 23. Gain-Error Histogram

Figure 25. Gain-Match Histogram

Typical Characteristics (continued)

$\mathrm{At}+25^{\circ} \mathrm{C}, \mathrm{AVDD}=2.5 \mathrm{~V}, \mathrm{AVSS}=-2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=4.096 \mathrm{MHz}, \mathrm{VREFP}=2.5 \mathrm{~V}, \mathrm{VREFN}=-2.5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{PGA}=1$, High-Resolution Mode, OFFSET enabled, CHOP enabled, and $\mathrm{f}_{\text {DATA }}=1000$ SPS (unless otherwise noted).

Figure 26. SNR vs Temperature

Figure 28. Crosstalk Output Spectrum

Figure 30. Input Bias Current vs Input Voltage

Figure 27. SNR vs Temperature (Low-Power Mode)

Figure 29. Power vs Temperature

Figure 31. Input Bias Current vs Input Voltage

Typical Characteristics (continued)

$\mathrm{At}+25^{\circ} \mathrm{C}, \mathrm{AVDD}=2.5 \mathrm{~V}, \mathrm{AVSS}=-2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=4.096 \mathrm{MHz}, \mathrm{VREFP}=2.5 \mathrm{~V}, \mathrm{VREFN}=-2.5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}, \mathrm{PGA}=1$, High-Resolution Mode, OFFSET enabled, CHOP enabled, and $\mathrm{f}_{\mathrm{DATA}}=1000$ SPS (unless otherwise noted).

Figure 32. Reference Input Impedance vs Temperature

ADS1284
www.ti.com

7 Parameter Measurement Information

7.1 Noise Performance

The ADS1284 offers outstanding signal-to-noise ratio (SNR). SNR depends on data rate, gain and mode of operation (high resolution or low power). As the bandwidth is reduced by decreasing the data rate, SNR improves correspondingly. Similarly, as gain is increased, the input-referred noise decreases. The low power mode decreases the oversampling ratio of the modulator and reduces the bias current of the PGA. As a consequence, low-power mode reduces the operating power but also results in increased conversion noise. The ADC incorporates a chop mode to remove $1 / \mathrm{f}$ noise from the PGA. Chop mode results in increased input current and as a result, chop mode may not be compatible with certain types of hydrophone sensors.
Input-referred noise is related to SNR by Equation 1:

where

- $\mathrm{FSR}_{\text {RMS }}=$ Full-scale range RMS $=\mathrm{V}_{\text {REF }} /(2 \times \sqrt{2} \times \mathrm{PGA})$
- $\mathrm{N}_{\text {RMS }}=$ Noise (RMS, input-referred)

Table 1 summarizes SNR and input-referred noise performance in low-power mode (chop enabled). Table 2 summarizes SNR and input-referred noise performance in low-power mode (chop disabled).

Table 1. Low-Power Mode SNR (dB) and Input Referred Noise ($\mu \mathrm{V}_{\mathrm{RmS}}$), Chop Enabled

DATA RATE (SPS)	PGA (SNR, dB) ${ }^{(1)}$							PGA (Input-Referred Noise, $\mu \mathrm{V}$ RMS)						
	1	2	4	8	16	32	64	1	2	4	8	16	32	64
250	127	127	126	124	122	116	111	0.79	0.41	0.22	0.14	0.09	0.09	0.08
500	124	124	123	121	119	113	108	1.13	0.58	0.31	0.19	0.13	0.12	0.11
1000	121	121	120	118	116	110	105	1.60	0.82	0.44	0.27	0.18	0.17	0.16
2000	118	118	117	115	113	107	102	2.27	1.16	0.63	0.39	0.26	0.24	0.22
4000	115	114	114	112	110	104	99	3.27	1.68	0.90	0.56	0.37	0.34	0.32

(1) Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. SNR data rounded to the nearest dB . Measurement bandwidth: 0.1 Hz to $0.413 \times$ data rate.

Table 2. Low-Power Mode SNR (dB) and Input Referred Noise ($\mu \mathrm{V}_{\text {RMS }}$), Chop Disabled

DATA RATE (SPS)	PGA (SNR, dB) ${ }^{(1)}$							PGA (Input-Referred Noise, $\mu \mathrm{V}$ RMS)						
	1	2	4	8	16	32	64	1	2	4	8	16	32	64
250	127	126	122	119	114	107	102	0.82	0.47	0.34	0.25	0.22	0.24	0.23
500	124	123	121	117	113	107	101	1.16	0.63	0.38	0.30	0.25	0.25	0.25
1000	121	120	119	116	112	106	100	1.61	0.85	0.50	0.37	0.29	0.29	0.27
2000	118	118	116	114	110	104	99	2.28	1.19	0.68	0.47	0.35	0.35	0.32
4000	115	114	114	111	108	102	97	3.29	1.70	0.94	0.62	0.43	0.43	0.40

(1) Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. SNR data rounded to the nearest dB . Measurement bandwidth: 0.1 Hz to $0.413 \times$ data rate.

Table 3 summarizes SNR and input-referred noise performance in high-resolution mode (chop enabled). Table 4 summarizes SNR and input-referred noise performance in high-resolution mode (chop disabled).

Table 3. High-Resolution Mode SNR (dB) and Input Referred Noise ($\mu \mathrm{V}_{\text {RMS }}$), Chop Enabled

DATA RATE (SPS)	PGA (SNR, dB) ${ }^{(1)}$							PGA (Input-Referred Noise, $\mu \mathrm{V}$ RMS)						
	1	2	4	8	16	32	64	1	2	4	8	16	32	64
250	130	129	129	127	125	119	114	0.59	0.30	0.16	0.10	0.07	0.06	0.06
500	127	126	126	124	122	116	111	0.84	0.43	0.23	0.14	0.09	0.09	0.08
1000	124	123	123	121	119	113	108	1.19	0.60	0.32	0.20	0.13	0.12	0.11
2000	121	120	120	118	116	110	105	1.68	0.86	0.46	0.28	0.18	0.17	0.16
4000	117	117	117	115	113	107	102	2.40	1.22	0.66	0.40	0.26	0.25	0.23

(1) Typical values at $T_{A}=25^{\circ} \mathrm{C}$. SNR data rounded to the nearest dB . Measurement bandwidth: 0.1 Hz to $0.413 \times$ data rate.

Table 4. High-Resolution Mode SNR (dB) and Input Noise ($\mu \mathrm{V}_{\text {RMS }}$), Chop Disabled

DATA RATE (SPS)	PGA (SNR, dB) ${ }^{(1)}$							PGA (Input-Referred Noise, $\mu \mathrm{V}$ RMS)						
	1	2	4	8	16	32	64	1	2	4	8	16	32	64
250	129	128	125	120	116	110	104	0.63	0.37	0.26	0.21	0.18	0.17	0.18
500	126	125	123	119	114	108	103	0.87	0.47	0.31	0.25	0.21	0.21	0.20
1000	123	123	121	117	114	108	102	1.20	0.65	0.39	0.30	0.22	0.22	0.22
2000	120	120	119	116	112	107	101	1.69	0.91	0.51	0.37	0.26	0.25	0.25
4000	117	117	116	114	111	105	99	2.41	1.24	0.70	0.46	0.33	0.31	0.30

(1) Typical values at $T_{A}=25^{\circ} \mathrm{C}$. SNR data rounded to the nearest dB . Measurement bandwidth: 0.1 Hz to $0.413 \times$ data rate.

8 Detailed Description

8.1 Overview

The ADS1284 is a high-performance analog-to-digital converter (ADC) designed for energy exploration, seismic monitoring, laboratory instrumentation, and other exacting performance applications. The converter provides 31bit resolution in data rates from 250 SPS to 4000 SPS. See the Functional Block Diagram section for a block diagram of the ADS1284.
The ADS1284 provides two modes of operation, high resolution and low power. The modes offer a tradeoff between power consumption and SNR performance. For most ADC configurations, low-power mode reduces power consumption 6 mW but results in an average 3 dB decrease of SNR. The operating mode is programmed by the MODE register bit (see Figure 71).

The two-channel, differential-input multiplexer allows several measurement configurations:

1. Input 1 (AINP1-AINN1)
2. Input 2 (AINP2 - AINN2)
3. All inputs disconnected. PGA internally shorted to $\mathrm{V}_{\text {Сом }}$ via $400-\Omega$ resistors for ADC noise test.
4. Input 1 and input 2 connected together to the PGA for measurement
5. PGA inputs connected to AINN2 for common-mode test.

The input multiplexer is followed by a continuous-time PGA featuring very low noise. The gain of the PGA is programmed by register settings (gains 1 to 64). A external $10-\mathrm{nF}$ C0G capacitor connected to CAPP and CAPN provides the ADC antialias filter.
The inherently-stable, fourth-order, delta-sigma modulator measures the differential input signal $\left(\mathrm{V}_{\text {IN }}=\right.$ AINP AINN) against the differential reference ($\mathrm{V}_{\text {REF }}=($ VREFP -VREFN$) / 2$) to yield differential input voltage range $=$ $\pm 2.5 \mathrm{~V}$ (PGA = 1). A digital output (MFLAG) indicates the modulator is in overload as a result of an overdrive condition. The modulator digital output data is routed to the digital filter to provide the conversion output data.
The digital filter consists of a variable decimation rate, fifth-order sinc filter, followed by a variable phase, fixeddecimation, finite-impulse response (FIR) low-pass filter with programmable phase. The last filter stage is an adjustable high-pass filter for dc and low frequency signal removal. The output of the digital filter can be taken from the sinc or the FIR filter stages, with the option of the FIR plus high-pass filter stages.
Gain and offset registers scale the output of the digital filter to produce the final output conversion data. The scaling feature can be used for calibration and sensor gain matching.
The SYNC input resets the operation of both the digital filter and the modulator, synchronizing the conversions of multiple ADCs to an external timing event. The SYNC input supports a continuous input mode that accepts an external data frame clock that is locked to the conversion rate. Automatic synchronization occurs when the periods are mismatched.
The $\overline{\mathrm{RESET}}$ input resets the register settings and also restarts the conversion process.
The $\overline{\text { PWDN }}$ input sets the device into power down. Note that register settings are not retained in $\overline{\text { PWDN }}$ mode. Use the STANDBY command for software power down (the quiescent current in standby mode is slightly higher).
Noise-immune Schmitt-trigger and clock-qualified inputs ($\overline{R E S E T}$ and SYNC) increase reliability in high-noise environments. The SPI ${ }^{\text {TM }}$-compatible serial interface is used to read conversion data, in addition to reading from and writing to the configuration registers.
The device supports either unipolar (+5 V) or bipolar ($\pm 2.5 \mathrm{~V}$) supply operation. The digital supply range 1.8 V to 3.3 V .

An internal subregulator powers the digital core from the DVDD supply. BYPAS (pin 28), is the subregulator output and requires a $1-\mu \mathrm{F}$ capacitor for noise reduction. Note that the regulated output voltage on BYPAS is not available to drive external circuitry.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Analog Inputs and Multiplexer

A diagram of the input multiplexer is shown in Figure 33.

Figure 33. Analog Inputs and Multiplexer
ESD diodes protect the multiplexer inputs. If either input is taken below AVSS - 0.3 V , or above AVDD +0.3 V , the ESD protection diodes can turn on. If these conditions are possible, use external clamp diodes, series resistors, or both to limit the input current to safe values (see the Absolute Maximum Ratings table).

Feature Description (continued)

Overdriving one unused input can affect the conversions of the other input. If an overdriven input interacts with the measured input, clamp the overdriven signal with external Schottky diodes.
The specified input operating range of the PGA is shown in Equation 2:

$$
\begin{equation*}
\text { AVSS }+0.7 \mathrm{~V}<(\text { AINN or AINP })<\text { AVDD }-1.25 \mathrm{~V} \tag{2}
\end{equation*}
$$

For best operation, maintain absolute input levels (input signal level and common-mode level) within these limits.
The multiplexer connects one of the two external differential inputs to the preamplifier inputs, in addition to internal connections for various self-test modes. Table 5 summarizes the multiplexer configurations for Figure 33.

Table 5. Multiplexer Modes

MUX[2:0]	SWITCHES	
000	$\mathrm{~S}_{1}, \mathrm{~S}_{5}$	AINP1 and AINN1 connected to preamplifier
001	$\mathrm{~S}_{2}, \mathrm{~S}_{6}$	AINP2 and AINN2 connected to preamplifier
010	$\mathrm{~S}_{3}, \mathrm{~S}_{4}$	Preamplifier inputs shorted together through 400- Ω internal resistors
011	$\mathrm{~S}_{1}, \mathrm{~S}_{5}, \mathrm{~S}_{2}, \mathrm{~S}_{6}$	AINP1, AINN1 and AINP2, AINN2 connected together and to the preamplifier
100	$\mathrm{~S}_{6}, \mathrm{~S}_{7}$	External short, preamplifier inputs shorted to AINN2 (common-mode test)

The typical value of multiplexer on-resistance is 30Ω (each switch). When the multiplexer is used to drive an external load connected to one channel by a signal generator connected to the other channel, on-resistance and on-resistance variation can lead to measurement errors. Figure 34 shows THD versus load resistance and amplitude (PGA gain). In this configuration, THD performance improves when used with high-impedance loads and low amplitude drive signals. The data are measured with the circuit from Figure 35 with the channel connected to each other for measurement (MUX[2:0] = 011).

Figure 34. THD vs External Load and Signal Magnitude (PGA); See Figure 35

Figure 35. Driving an External Load Through the Multiplexer

8.3.2 Programmable Gain Amplifier (PGA)

The PGA of the ADS1284 is a low-noise, continuous-time, differential-in and differential-out CMOS amplifier. The gain is set by register bits PGA[2:0], programmable from 1 to 64 . The PGA differentially drives the modulator of the ADC through $300-\Omega$ internal resistors. The effect of the internal resistors and the modulator input impedance results in gain error that changes with operating mode (see Electrical Characteristics). A PGA output filter capacitor (10-nF COG or film dielectric) must be connected to CAPP and CAPN in order to filter modulator sampling glitches. The external capacitor also serves as the antialias filter. The corner frequency of the filter is given in Equation 3:

$$
\begin{equation*}
f_{P}=\frac{1}{6.3 \times 600 \times C} \tag{3}
\end{equation*}
$$

The PGA incorporates chopper stabilization. As shown in Figure 36, amplifiers A_{1} and A_{2} are chopper stabilized to remove the offset, offset drift, and $1 / f$ noise. Chopper stabilization (or chopping) moves the offset and noise to $\mathrm{f}_{\mathrm{CLK}} / 1024\left(4 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}}=4.096 \mathrm{MHz}\right)$, which is located safely out of the pass-band frequency range. Chopping can be disabled by setting the CHOP bit $=0$. When chopping is disabled, the PGA input impedance increases (see Differential Input Impedance parameter in the Electrical Characteristics). As shown in Figure 37, chopper stabilization provides flat noise density, leaving the noise spectrum white. However, if chopper stabilization is disabled, the PGA input noise results in a rising 1/f noise profile. The effect of $1 / \mathrm{f}$ noise to the conversion data is most noticeable at high PGA gain setting.

(1) Modulator impedance depends on operating mode. High-resolution mode modulator impedance is $55 \mathrm{k} \Omega$. Low-power mode modulator impedance is $110 \mathrm{k} \Omega$.

Figure 36. PGA Block Diagram

Figure 37. PGA Noise (High-resolution Mode)

As a result of charges stored on stray capacitance of the input chopping switches, low-level transient currents flow through the inputs when chopper stabilization is enabled. The average value of the transient currents results in an effective input impedance. The effective input impedance depends on the PGA gain, as shown in Table 6. Despite the relatively high input impedance, evaluate applications that use high-impedance sensors or highimpedance termination resistors. In some cases, ADC performance may be improved by disabling chopper stabilization. Table 6 shows the PGA differential input impedance with chopper stabilization enabled.

Table 6. Differential Input Impedance (CHOP Enabled)

PGA	DIFFERENTIAL INPUT IMPEDANCE (G』)
1	7
2	7
4	4
8	3
16	2
32	1
64	0.5

The PGA provides programmable gains from 1 to 64 . Table 7 shows the register bit setting for the PGA and resulting full-scale differential range.

Table 7. PGA Gain Settings

PGA[2:0]	GAIN	DIFFERENTIAL INPUT RANGE $(\mathbf{V})^{(1)}$
000	1	± 2.5
001	2	± 1.25
010	4	± 0.625
011	8	± 0.312
100	16	± 0.156
101	32	± 0.078
110	64	± 0.039

(1) $\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}$. The input range scales with $\mathrm{V}_{\text {REF }}$.

The specified range of the PGA output is shown in Equation 4:
AVSS $+0.4 \mathrm{~V}<$ (CAPN or CAPP) $<$ AVDD -0.4 V
For best performance, maintain PGA output levels (signal plus common mode voltage) within these limits.

8.3.3 Analog-to-Digital Converter (ADC)

The ADC of the ADS1284 consists of two sections to yield the conversion data result: a low-noise modulator and a programmable digital filter.

8.3.3.1 Modulator

The low-noise modulator is an inherently-stable, fourth-order, $\Delta \Sigma, 2+2$ pipelined structure, as Figure 38 shows. The modulator shifts the quantization noise to a higher frequency (out of the passband), where the noise is removed by the digital filter. The modulator data can either be completely filtered by the on-chip digital filter or partially filtered by use of the sinc filter section alone. Partial filtering provided by the sinc filter section is intended for use with an external FIR filter.

Figure 38. ADS1284 Fourth-Order Modulator
Modulator performance is optimized for input signal frequencies over the range dc to 2 kHz . As Figure 39 shows, the effect of PGA and modulator chop result in spectral artifacts occurring at the chop frequency (4 kHz) and harmonics related of the chop frequency. When using the sinc filter output in conjunction with an external postdecimation filter, design the external filter to suppress the modulator chopping artifacts.

Figure 39. Sinc Output FFT (64 kSPS)

8.3.3.1.1 Modulator Overrange

The modulator is inherently stable, and therefore, has predictable recovery behavior resulting from an input overdrive condition. The modulator does not exhibit self-reset cycles, which often results in an unstable output data stream. The ADS1284 modulator outputs a data stream with 90% duty cycle of ones-to-zeroes density with the positive full-scale input signal applied (10% duty cycle with the negative full-scale signal). If the input is overdriven to exceed 10% or 90% modulation, but not saturated, the modulator remains stable and continues to output the 1 s density data stream. The digital filter may or may not clip the output codes to + FS or -FS , depending on the duration of the overdrive. When the input returns to the normal range from a long-duration overdrive (worst case), the modulator returns immediately to the normal range, but the group delay of the digital filter delays the return of the conversion data to within the linear range (31 readings for linear phase FIR). An additional 31 readings (62 total) are required for completely settled data.

If the inputs are overdriven sufficiently to drive the modulator to full duty cycle (that is, all 1 s or all 0 s), the modulator is saturated. The digital output code may clip to +FS or -FS , again depending on the duration of the overdrive. A small-duration overdrive may not always clip the output code. When the input returns to the normal range, the modulator requires up to 12 modulator clock cycles ($f_{\text {MOD }}$) to exit saturation and return to linear operation. The digital filter requires an additional 62 conversions for fully-settled data (linear-phase FIR).

In the extreme case of input overrange (where either overdriven input exceeds the voltage of the analog supply voltage plus the input protection diode drop), the protection diodes begin to conduct, thus clipping the input signal. When the input overdrive is removed, the diodes recover quickly. Make sure to limit the input current to 10 mA (continuous duty) if an overvoltage input signals are possible.

8.3.3.1.2 Modulator Input Impedance

The modulator samples the buffered input voltage through an internal capacitor to perform the ADC conversion. The charging of the input sampling capacitor draws a transient current from the PGA output. Use the average value of the current to calculate an effective input impedance, as shown in Equation 5:
$R_{\text {EFF }}=1 /\left(f_{\text {MOD }} \times C_{S}\right)$
where

- $\mathrm{f}_{\text {MOD }}=$ Modulator sample frequency $=$ CLK / 4 (CLK / 8 for low-power mode)
- $\mathrm{C}_{\mathrm{S}}=$ Input sampling capacitor $=17 \mathrm{pF}$ (typ)

The resulting modulator input impedance is $55 \mathrm{k} \Omega$ ($110 \mathrm{k} \Omega$ low-power mode). The modulator input impedance and the PGA output resistors result in systematic gain errors. The modulator sampling capacitor and PGA output resistors can each vary up to $\pm 20 \%$ over production lots, affecting the nominal gain error.

8.3.3.1.3 Modulator Overrange Detection (MFLAG)

The ADS1284 has a fast-responding, overrange detection that indicates when the differential input exceeds 100% or -100% full-scale. The threshold tolerance is $\pm 2.5 \%$. The MFLAG output pin asserts high when in an overrange condition. As Figure 40 and Figure 41 illustrate, the absolute differential input is compared to 100% of range. The output of the comparator is sampled at the rate of $f_{\text {MOD }} / 2$, yielding the MFLAG output. The minimum detectable MFLAG pulse duration is $f_{\text {MOD }} / 2$.

Figure 40. Modulator Overrange Block Diagram

Figure 41. Modulator Overrange Flag Operation

8.3.3.1.4 Offset

The modulator can produce low-level idle tones that appear in the conversion data when there is no signal input or when low-level signal inputs are present to the ADC. The ADC provides an optional dc offset voltage designed to shift the idle tones to the stop band of digital filter response, where the idle tones are reduced. The internal offset is applied at the modulator input; therefore, the offset voltage is independent of PGA gain. Two offset voltage options are provided, 75 mV and 100 mV . The $75-\mathrm{mV}$ offset is more effective to reduce idle tones under various gain, data rate, and chop mode settings.
The offset is enabled by the OFFSET1 and OFFSET0 bits (default is off). The offset voltage reduces the total available input range 4% (3% for the 75 mV value) before the onset of clipped conversion results. To restore the full range of the ADC, calibrate the offset voltage by the digital offset calibration register (OFC[2:0]). See Offset and Full-Scale Calibration Registers and Calibration Commands (OFSCAL and GANCAL) sections for details.

8.3.3.1.5 Voltage Reference Inputs (VREFP, VREFN)

The voltage reference of the ADS1284 is the differential voltage applied between pins VREFP and VREFN:

$$
\begin{equation*}
\mathrm{V}_{\text {REF }}=\mathrm{VREFP}-\mathrm{VREFN} \tag{6}
\end{equation*}
$$

The reference inputs use a structure similar to that of the analog inputs with the circuitry of the reference inputs shown in Figure 42. The average load presented by the switched-capacitor reference input can be modeled with an effective differential impedance of:

$$
\begin{equation*}
R_{\text {EFF }}=t_{\text {SAMPLE }} / C_{\text {IN }}\left(\mathrm{t}_{\text {SAMPLE }}=1 / \mathrm{f}_{\text {MOD }}\right) . \tag{7}
\end{equation*}
$$

Note that the effective impedance of the reference inputs loads the external reference.

$R_{\text {EFF }}$ shown for high-resolution mode operation. $R_{\text {EFF }}$ for low-power mode operation is $170 \mathrm{k} \Omega$
Figure 42. Simplified Reference Input Circuit
Place a $0.1-\mu \mathrm{F}$ ceramic capacitor directly between the ADC VREFP and VREFN pins. Multiple ADC applications can share a single voltage reference, but must have individual capacitors placed at each ADC.
The ADS1284 reference inputs are protected by ESD diodes. In order to prevent these diodes from turning on, the voltage on either input must stay within the range shown in Equation 8:

$$
\begin{equation*}
\text { AVSS }-300 \mathrm{mV}<(\text { VREFP or VREFN })<\text { AVDD }+300 \mathrm{mV} \tag{8}
\end{equation*}
$$

The minimum operational input range for VREFN is AVSS -0.1 V , and the maximum operational range for VREFP is AVDD + 0.1 V.

To achieve the best ADC performance, use a low-noise $5-\mathrm{V}$ voltage reference. A $4.096-\mathrm{V}$ or $4.5-\mathrm{V}$ reference voltage can be used; however, these lower reference voltages reduce the signal input range and corresponding decrease SNR. Noise and drift on the reference degrade overall system performance. To achieve optimum performance, give attention to the circuitry providing the reference voltage including possible use of noise filtering. See the Application Information section for reference recommendations.

8.3.3.2 Digital Filter

The digital filter receives the modulator output data stream and decimates and filters the data. By adjusting the amount of filtering, tradeoffs can be made between resolution and data rate: filter more for higher resolution, filter less for higher data rate.
The digital filter is comprised of three filter sections: a variable-decimation, fifth-order sinc filter; a fixeddecimation FIR, low-pass filter (LPF) with selectable phase; and a programmable, first-order, high-pass filter (HPF), as shown in Figure 43.

Figure 43. Digital Filter and Output Code Processing
The output can be taken from one of the three filter sections, as Figure 43 shows. For partial filtering of the conversion data, select the sinc filter mode. The sinc filter mode is intended for use in conjunction with an external FIR filter. For complete on-chip filtering, select the sinc + FIR mode. With sinc + FIR filter mode active, the HPF can be included to remove dc and low frequencies from the data. Table 8 shows the filter mode options.

Table 8. Digital Filter Selection

FILTR[1:0] BITS	DIGITAL FILTER MODE
00	Reserved (not used)
01	Sinc
10	Sinc + FIR
11	Sinc + FIR + HPF

8.3.3.2.1 Sinc Filter Section $(\sin \mathbf{x} / \mathbf{x})$

The sinc filter is a variable decimation rate, fifth-order, low-pass filter. Data are supplied to this section of the filter from the modulator at the rate of $f_{\text {MOD }}=f_{\text {CLK }} / 4$ (high-resolution mode) or $\mathrm{f}_{\text {MOD }}=\mathrm{f}_{\text {CLK }} / 8$ (low-power mode). The sinc filter attenuates high-frequency noise produced by the modulator and also reduces the data rate (decimation ratio) in proportion to the amount of filtering. The decimation ratio of the sinc filter effects the overall data rate of the converter. The sinc and sinc + FIR filter mode data rates are programmed by the DR[2:0] register bits. The sinc filter mode data rates are shown in Table 9.

Table 9. Sinc Filter Mode Data Rates

DR[2:0] REGISTER	DECIMATION RATIO (N)		
	HIGH-RESOLUTION MODE	LOW-POWER MODE	DATA RATE (SPS)
	128	64	
001	64	32	16,000
010	32	16	32,000
011	16	8	64,000
100	8	4	128,000

Equation 9 shows the scaled Z-domain transfer function of the sinc filter.
$H(Z)=\left[\frac{1-Z^{-N}}{N\left(1-Z^{-1}\right)}\right]^{5}$
where

$$
\begin{equation*}
\text { - } \mathrm{N}=\text { decimation ratio } \tag{9}
\end{equation*}
$$

Equation 10 shows the frequency domain transfer function of the sinc filter.

$$
|H(f)|=\left|\frac{\sin \left(\frac{\pi N \times f}{f_{M O D}}\right)}{N \sin \left(\frac{\pi \times f}{f_{M O D}}\right)}\right|^{5}
$$

where

- $\mathrm{N}=$ decimation ratio (see Table 9)
- $\mathrm{f}_{\text {MOD }}=\mathrm{f}_{\text {CLK }} / 4$ (high-resolution mode) or $\mathrm{f}_{\text {CLK }} / 8$ (low-power mode)

The sinc filter has notches (or zeros) that occur at the output data rate and multiples thereof. At these frequencies, the filter has zero gain. Figure 44 shows the frequency response of the sinc filter and Figure 45 shows the roll-off of the sinc filter.

8.3.3.2.2 FIR Section

The second section of the digital filter is an FIR low-pass filter. Data are supplied to this section from the sinc filter. The FIR stage is segmented into four subsections, as shown in Figure 46.

Figure 46. FIR Filter

ADS1284
www.ti.com
The first two subsections are half-band filters with fixed decimation ratios of two. The third subsection of the FIR filter decimates by four (fixed), and the fourth subsection decimates by two (fixed). The overall decimation ratio of the entire FIR section is 32 . Two coefficient sets are used for the third and fourth subsections, sets for linear phase mode and minimum phase mode (programmable). Table 10 lists the data rate programming and overall decimation ratio of the FIR stage. See Table 11 for the FIR filter coefficients.

Table 10. FIR Filter Data Rates

DR[2:0] REGISTER	OVERALL DECIMATION RATIO (COMBINED SINC + FIR)		
	HIGH-RESOLUTION MODE	LOW-POWER MODE	
000	4096	2048	250
001	2048	1024	500
010	1024	512	1000
011	512	256	2000
100	256	128	4000

Table 11. FIR Stage Coefficients

COEFFICIENT	SECTION 1	SECTION 2				
	LINEAR PHASE SCALING = 1 / 512	LINEAR PHASE SCALING = 1 / 8388608	SCALING = $1 / 134217728$		SCALING = 1 / 134217728	
			LINEAR PHASE	MINIMUM PHASE	LINEAR PHASE	MINIMUM PHASE
b_{0}	3	-10944	0	819	-132	11767
b_{1}	0	0	0	8211	-432	133882
b_{2}	-25	103807	-73	44880	-75	769961
b_{3}	0	0	-874	174712	2481	2940447
b_{4}	150	-507903	-4648	536821	6692	8262605
b_{5}	256	0	-16147	1372637	7419	17902757
b_{6}	150	2512192	-41280	3012996	-266	30428735
b_{7}	0	4194304	-80934	5788605	-10663	40215494
b_{8}	-25	2512192	-120064	9852286	-8280	39260213
b_{9}	0	0	-118690	14957445	10620	23325925
b_{10}	3	-507903	-18203	20301435	22008	-1757787
b_{11}		0	224751	24569234	348	-21028126
b_{12}		103807	580196	26260385	-34123	-21293602
b_{13}		0	893263	24247577	-25549	-3886901
b_{14}		-10944	891396	18356231	33460	14396783
b_{15}			293598	9668991	61387	16314388
b_{16}			-987253	327749	-7546	1518875
b_{17}			-2635779	-7171917	-94192	-12979500
b_{18}			-3860322	-10926627	-50629	-11506007
b_{19}			-3572512	-10379094	101135	2769794
b_{20}			-822573	-6505618	134826	12195551
b_{21}			4669054	-1333678	-56626	6103823
b_{22}			12153698	2972773	-220104	-6709466
b_{23}			19911100	5006366	-56082	-9882714
b_{24}			25779390	4566808	263758	-353347
b_{25}			27966862	2505652	231231	8629331
b_{26}			25779390	126331	-215231	5597927
b_{27}			19911100	-1496514	-430178	-4389168
b_{28}			12153698	-1933830	34715	-7594158
b_{29}			4669054	-1410695	580424	-428064

Table 11. FIR Stage Coefficients (continued)

COEFFICIENT	SECTION 1	SECTION 2				
	LINEAR PHASE SCALING = 1 / 512	LINEAR PHASE SCALING = 1 / 8388608	SCALING = 1 / 134217728		SCALING = 1 / 134217728	
			LINEAR PHASE	MINIMUM PHASE	LINEAR PHASE	MINIMUM PHASE
b_{30}			-822573	-502731	283878	6566217
b_{31}			-3572512	245330	-588382	4024593
b_{32}			-3860322	565174	-693209	-3679749
b_{33}			-2635779	492084	366118	-5572954
b_{34}			-987253	231656	1084786	332589
b_{35}			293598	-9196	132893	5136333
b_{36}			891396	-125456	-1300087	2351253
b_{37}			893263	-122207	-878642	-3357202
b_{38}			580196	-61813	1162189	-3767666
b_{39}			224751	-4445	1741565	1087392
b_{40}			-18203	22484	-522533	3847821
b_{41}			-118690	22245	-2490395	919792
b_{42}			-120064	10775	-688945	-2918303
b_{43}			-80934	940	2811738	-2193542
b_{44}			-41280	-2953	2425494	1493873
b_{45}			-16147	-2599	-2338095	2595051
b_{46}			-4648	-1052	-4511116	-79991
b_{47}			-874	-43	641555	-2260106
b_{48}			-73	214	6661730	-963855
b_{49}			0	132	2950811	1482337
b_{50}			0	33	-8538057	1480417
b_{51}			0	0	-10537298	-586408
b_{52}					9818477	-1497356
b_{53}					41426374	-168417
b_{54}					56835776	1166800
b_{55}					41426374	644405
b_{56}					9818477	-675082
b_{57}					-10537298	-806095
b_{58}					-8538057	211391
b_{59}					2950811	740896
b_{60}					6661730	141976
b_{61}					641555	-527673
b_{62}					-4511116	-327618
b_{63}					-2338095	278227
b_{64}					2425494	363809
b_{65}					2811738	-70646
b_{66}					-688945	-304819
b_{67}					-2490395	-63159
b_{68}					-522533	205798
b_{69}					1741565	124363
b_{70}					1162189	-107173
b_{71}					-878642	-131357
b_{72}					-1300087	31104
b_{73}					132893	107182
b_{74}					1084786	15644

Table 11. FIR Stage Coefficients (continued)

COEFFICIENT	SECTION 1	SECTION 2				
	LINEAR PHASE SCALING = $1 / 512$	LINEAR PHASE SCALING = 1 / 8388608	SCALING = 1 / 134217728		SCALING = 1 / 134217728	
			LINEAR PHASE	MINIMUM PHASE	LINEAR PHASE	MINIMUM PHASE
b_{75}					366118	-71728
b_{76}					-693209	-36319
b_{77}					-588382	38331
b_{78}					283878	38783
b_{79}					580424	-13557
b_{80}					34715	-31453
b_{81}					-430178	-1230
b_{82}					-215231	20983
b_{83}					231231	7729
b_{84}					263758	-11463
b_{85}					-56082	-8791
b_{86}					-220104	4659
b_{87}					-56626	7126
b_{88}					134826	-732
b_{89}					101135	-4687
b_{90}					-50629	-976
b_{91}					-94192	2551
b_{92}					-7546	1339
b_{93}					61387	-1103
b_{94}					33460	-1085
b_{95}					-25549	314
b_{96}					-34123	681
b_{97}					348	16
b_{98}					22008	-349
b_{99}					10620	-96
b_{100}					-8280	144
b_{101}					-10663	78
b_{102}					-266	-46
b_{103}					7419	-42
b_{104}					6692	9
b_{105}					2481	16
b_{106}					-75	0
b_{107}					-432	-4
b_{108}					-132	0
b_{109}					0	0

As shown in Figure 47, the frequency response of the FIR filter is minimum ripple, flat to 0.375 of the data rate ($\pm 0.003 \mathrm{~dB}$ pass-band ripple until $0.375 \cdot \mathrm{f}_{\text {DATA }}$) and is fully attenuated at the Nyquist frequency. Figure 48 shows the transition from pass band to stop band.

Although not shown in Figure 48, the pass-band response repeats at multiples of the modulator frequency (N $f_{\text {MOD }}-f_{0}$ and $N \cdot f_{\text {MOD }}+f_{0}$, where $N=1,2$, and so on, and $f_{0}=$ pass band). These image frequencies, if present in the signal and not filtered before the analog-to-digital conversion process, fold back (or alias) into the pass band and cause errors. A low-pass signal filter reduces the amplitude of the aliasing frequencies. Often, the RC low-pass filter provided by the PGA output resistance and the external capacitor connected to CAPP and CAPN provide sufficient anti-alias attenuation.

8.3.3.2.3 Group Delay and Step Response

The FIR block is implemented as a multistage FIR structure with selectable linear or minimum phase response. The pass band, transition band, and stop band responses of the filters are nearly identical but differ in the respective phase responses.

8.3.3.2.3.1 Linear Phase Response

Linear phase filters exhibit constant delay time versus input frequency (that is, constant group delay). Linear phase filters have the property that the time delay is constant from any instant of the input signal to the same instant of the output data, and is independent of the signal frequency. This filter behavior results in essentially zero phase error when analyzing multi-tone signals. However, the group delay is longer than the minimum phase filter, as shown in Figure 49.

Figure 49. FIR Step Response

8.3.3.2.3.2 Minimum Phase Response

The minimum phase filter provides a short delay from the arrival of an input signal to the output of conversion data, but the phase relationship is not constant versus frequency, as shown in Figure 50. The filter phase is selected by the PHS bit, as Table 12 shows.

Figure 50. FIR Group Delay ($\mathrm{f}_{\text {DATA }}=500 \mathrm{~Hz}$)
Table 12. FIR Filter Phase Selection

PHS BIT	FILTER PHASE
0	Linear
1	Minimum

8.3.3.2.4 HPF Section

The last section of the digital filter is a first-order HPF implemented as an IIR structure. This filter stage blocks dc signals, and rolls-off low frequency components below the cutoff frequency. The transfer function for the filter is shown in Equation 11:

$$
\operatorname{HPF}(Z)=\frac{2-a}{2} \times \frac{1-Z^{-1}}{1-b Z^{-1}}
$$

where

- b is calculated as shown in Equation 12

$$
\begin{equation*}
\mathrm{b}=\frac{1+(1-\mathrm{a})^{2}}{2} \tag{11}
\end{equation*}
$$

The high-pass corner frequency is programmed by registers HPF[1:0], in hexadecimal. Equation 13 is used to set the high-pass corner frequency. Table 13 lists example values for the high-pass filter.
$\operatorname{HPF}[1: 0]=65,536\left[1-\sqrt{1-2 \frac{\cos \omega_{N}+\sin \omega_{N}-1}{\cos \omega_{N}}}\right]$
where

- HPF[1:0] = High-pass filter register value (converted to hexadecimal)
- $\omega_{N}=2 \pi f_{H P} / f_{\text {DATA }}$ (normalized frequency, radians)
- $f_{H P}=$ High-pass corner frequency (Hz)
- $\mathrm{f}_{\text {DATA }}=$ Data rate (Hz)

Table 13. High-Pass Filter Value Examples

$\mathbf{f}_{\mathbf{H P}} \mathbf{(H z)}$	DATA RATE (SPS)	HPF[1:0]
0.5	250	0337 h
1.0	500	0337 h
1.0	1000	019 Ah

The HPF causes a small gain error, in which case the magnitude of the error depends on the ratio of $f_{\text {HP }} / f_{\text {DATA }}$. For many common values of ($\mathrm{f}_{\text {HP }} / \mathrm{f}_{\text {DATA }}$), the gain error is negligible. Figure 51 shows the gain error of the HPF.

Figure 51. HPF Gain Error
The gain error factor is calculated in Equation 14:

$$
\begin{equation*}
\text { HPF Gain }=\frac{1+\sqrt{1-2\left(\frac{\cos \omega_{N}+\sin \omega_{N}-1}{\cos \omega_{N}}\right)}}{2-\left(\frac{\cos \omega_{N}+\sin \omega_{N}-1}{\cos \omega_{N}}\right]} \tag{14}
\end{equation*}
$$

Figure 52 shows the first-order amplitude and phase response of the HPF. In the case of applying step inputs (changing gains or inputs) or synchronizing, make sure to take the settling time of the filter into account.

Figure 52. HPF Amplitude and Phase Response

8.4 Device Functional Modes

8.4.1 Synchronization (SYNC PIN and SYNC Command)

The ADS1284 can be synchronized to an external event, as well as synchronizing multiple ADS1284 devices together if the synchronization pulse is applied simultaneously.
The ADS1284 has two methods of synchronization: the SYNC input pin and the SYNC command. In addition, there are two synchronization modes: pulse-sync and continuous-sync. In pulse-sync mode, the ADS1284 synchronizes unconditionally at each synchronization event. In continuous-sync mode, the first synchronization is unconditional, thereafter the ADC re-synchronizes only when the next SYNC pin edge does not occur at an integer multiple of the data rate. Typically, a synchronization clock is applied to the SYNC pin with a period equal to an integer multiple of the data rate. When the periods of the SYNC input and the DRDY output do not match due to system glitch or clock noise event, the ADC re-synchronizes.

8.4.1.1 Pulse-Sync Mode

In pulse-sync mode, the ADS1284 unconditionally synchronizes by stopping and restarting the conversion process. Synchronization is possible by pin or command in this mode. At synchronization, the device resets the internal filter memory, DRDY goes high, and after the digital filter has settled, new conversion data are available as shown in Figure 53 and Table 14 (Pulse-sync mode).

Figure 53. Pulse-Sync and Continuous-Sync Timing With Single Synchronization

Table 14. Pulse-Sync Timing for Figure 53 and Figure 54

PARAMETER		MIN	MAX
$t_{\text {CSDL }}$	CLK rising edge to SYNC rising edge ${ }^{(1)}$	30	-30
$t_{\text {SYNC }}$	SYNC clock period ${ }^{(2)}$	ns	
$\mathrm{t}_{\text {SPWH, }} \mathrm{L}$	SYNC pulse width, high or low	1	Infinite
t_{DR}	Time for data ready (SINC filter)	$\mathrm{f}_{\text {DATA }}$	
	Time for data ready (FIR filter)	$1 / \mathrm{f}_{\mathrm{CLK}}$	

[^0]Table 15. t_{DR} Time for Data Ready (Sinc Filter)

$\mathbf{f}_{\text {DATA }}(\mathbf{k S P S})$	$\mathbf{f}_{\text {CLK }}$ CYCLES $^{(1)}$
128	440
64	616
32	968
16	1672
8	2824

(1) For SYNC and WAKEUP commands, number of $\mathrm{f}_{\mathrm{cLK}}$ cycles from next rising CLK edge directly after eighth rising SCLK edge to DRDY falling edge. For WAKEUP command only, subtract two $f_{\text {CLK }}$ cycles.
Table 15 is referenced by Table 14 and Table 17.
Observe the timing restriction of SYNC rising edge to CLK rising edge as shown in Figure 53 and Table 14. Synchronization occurs on the next rising CLK edge after the rising edge of the SYNC, or after the eighth rising SCLK edge when synchronized by command. To synchronize multiple ADCs by the sync command, broadcast the command to the ADCs simultaneously.

8.4.1.2 Continuous-Sync Mode

In continuous-sync mode, either a single synchronization pulse or a continuous synchronization clock may be applied. Use the SYNC pin in this mode. When a single sync pulse is applied (rising edge), the device resynchronizes the same way as pulse-sync mode. ADC re-synchronization occurs only when the time between SYNC rising edges is not an integer multiple of the conversion period. When resynchronization occurs, DRDY continues to toggle at the period of the date rate, and the DOUT output is held low until data are ready (63 DRDY periods later). At the 63rd reading, conversion data are valid, as shown in Figure 53.
If an additional pulse is applied to the SYNC pin, the elapsed time from the previous pulse must be an integral multiple of the output data rate otherwise re-synchronization results.
If a synchronization clock is applied to the SYNC pin, the device resynchronizes only under the condition $\mathrm{t}_{\text {SYNC }} \neq$ $\mathrm{N} / \mathrm{f}_{\text {DATA }}$, where $\mathrm{N}=1,2,3$, and so on. When re-synchronized, DRDY continues to strobe, but the data on DOUT is held low until new data are valid after filter reset. If the period of the synchronizing clock matches an integral multiple of the data rate, the ADC does not re-synchronize. Note that the phase of the applied clock and output data rate ($\overline{\mathrm{DRDY}}$) is not aligned because of the initial delay of $\overline{\mathrm{DRDY}}$ after the SYNC clock is first applied. Figure 54 shows the timing for continuous-sync mode.

Figure 54. Continuous-Sync Timing With SYNC Clock
Apply the synchronization clock after the continuous-sync mode is programmed. The first rising edge of SYNC then results in synchronization. Note that subsequent writes to any ADC register results in re-synchronization at the time of the register write operation. The re-synchronization leads to loss of the previous synchronization. Send the STANDBY command followed by the WAKEUP command to re-establish the previous synchronization. Re-synchronization occurs is valid as long as the time between the STANDBY and WAKEUP commands is not a multiple integer of the conversion period by at least one clock cycle.

8.4.2 Reset (RESET Pin and Reset Command)

Reset the ADC in three ways: cycle the power supplies, toggle the $\overline{\text { RESET }}$ pin low, or send a RESET command. When using the RESET pin, take it low and hold for at least $2 / \mathrm{f}_{\mathrm{CLK}}$ to force a reset. The ADS1284 is held in reset until the pin is released. By reset command, reset takes effect on the next rising edge of $\mathrm{f}_{\text {CLK }}$ after the eighth rising edge of SCLK of the command. In order to make certain that the RESET command functions, the SPI interface may need to be reset; see the Serial Interface section.
When the ADS1284 is reset, registers are set to default and the conversions are synchronized on the next rising edge of CLK. New conversion data are available, as shown in Figure 55 and Table 16.

Figure 55. Reset Timing

Table 16. Reset Timing for Figure 55

PARAMETER		MIN	UNIT
$\mathrm{t}_{\mathrm{CRHD}}$	CLK to RESET hold time	10	ns
$\mathrm{t}_{\text {RCSU }}$	RESET to CLK setup time	10	ns
$\mathrm{t}_{\text {RST }}$	RESET low	2	$1 / \mathrm{f}_{\mathrm{CLK}}$
t_{DR}	Time for data ready	$62.98046875 / \mathrm{f}_{\text {DATA }}+468 / \mathrm{f}_{\mathrm{CLK}}$	

8.4.3 Master Clock Input (CLK)

The ADS1284 requires a clock for operation. The specified clock frequency is 4.096 MHz and is applied to the CLK pin. The ADC data rates scale with clock frequency, however there is no benefit in noise reduction by reducing clock frequency; select a slower data to reduce noise.

As with any high-speed data converter, a high-quality, low-jitter clock is essential for optimum performance. Crystal clock oscillators are the recommended clock source. Make sure to avoid excess ringing on the clock input; keep the clock trace as short as possible and use a $50-\Omega$ series resistor close to the clock source.

8.4.4 Power-Down ($\overline{\text { PWDN }}$ Pin and STANDBY Command)

Power-down the ADS1284 in two ways: take the PWDN pin low, or send a STANDBY command. When the $\overline{\text { PWDN }}$ pin is pulled low, the internal circuitry is disabled to minimize power and the contents of the register settings are reset.
When in the power-down state, the device outputs remain active and the device inputs must not float. When the STANDBY command is sent, the SPI port and the configuration registers are kept active. Figure 56 and Table 17 show the timing. Standby mode is cancelled when $\overline{\mathrm{CS}}$ is taken high.

Figure 56. $\overline{\text { PWDN Pin and Wake-Up Command Timing }}$ (Table 17 shows t_{DR})

Table 17. Power-On, $\overline{\text { PWDN Pin, and Wake-Up Command Timing for New Data }}$

PARAMETER			FILTER MODE
$t_{\text {DR }}$	Time for data ready 2^{16} CLK cycles after power-on; and new data ready after PWDN pin or WAKEUP command	See Table 15	SINC ${ }^{(1)}$
		$62.98046875 / \mathrm{f}_{(2)}^{(2)} \mathrm{dATA}+468 / \mathrm{f}_{\mathrm{CLK}}$	FIR

(1) Supply power-on and PWDN pin default is 1000 SPS FIR.
(2) Subtract two CLK cycles for the WAKEUP command. The WAKEUP command is timed from the next rising edge of CLK to after the eighth rising edge of SCLK during command to $\overline{\text { DRDY }}$ falling.

8.4.5 Power-On Sequence

The ADS1284 has three power supplies: AVDD, AVSS, and DVDD. Figure 57 shows the power-on sequence of the ADS1284. The power supplies can be sequenced in any order. The supplies [the difference of AVDD AVSS, and DVDD] generate signals that are ANDed together to generate reset. After the supplies have crossed the power-on reset thresholds, $2^{16} \mathrm{f}_{\text {cLK }}$ cycles are counted before releasing the internal reset. After the internal reset is released, new conversion data are available, as shown in Figure 57 and Table 17.

Figure 57. Power-On Sequence

8.4.6 DVDD Power Supply

The DVDD supply operates over the range of 1.65 V to 3.6 V . If operating DVDD at less than 2.25 V , connect the DVDD pin directly to the BYPAS pin. Figure 58 shows the required connection if DVDD $<2.25 \mathrm{~V}$. Otherwise if operating DVDD > 2.25 V , do not connect the pins together.

Figure 58. DVDD Power

8.4.7 Serial Interface

A serial interface is used to read both the conversion data and to access the configuration registers. The interface is SPI-compatible and consists of four signals: $\overline{C S}$, SCLK, DIN, and DOUT. Up to 15 ADCs converting at 4 kSPS can share a common serial bus when operating SCLK at 2.048 MHz .

8.4.7.1 Chip Select ($\overline{C S}$)

Chip select ($\overline{\mathrm{CS}}$) is an active-low input that enables the ADC serial interface for data transfer. $\overline{\mathrm{CS}}$ low enables communication. $\overline{\text { CS }}$ high disables communication. When communication is disabled, DOUT (output data pin) is high impedance (tristate mode). Additionally, SCLK activity is ignored, and data transfers or commands in progress are reset. $\overline{C S}$ must remain low for the duration of the data transfer with the ADC. $\overline{C S}$ can be tied low, which permanently enables the ADC serial interface. When $\overline{\mathrm{CS}}$ goes high, the ADC idle mode (STANDBY) and stop read data continuous (SDATAC) modes are cancelled. See the SDATAC Requirements section for more information about SDATAC mode.

8.4.7.2 Serial Clock (SCLK)

The serial clock (SCLK) is a digital input that is used to clock data into (DIN) and out of (DOUT) the ADC. SCLK is a Schmitt-trigger input that has a high degree of noise immunity. However, keep the SCLK signal as clean as possible to prevent possible glitches from inadvertently shifting the data. Data are shifted into DIN on the rising edge of SCLK and data are shifted out of DOUT on the falling edge of SCLK. Keep SCLK low when not active. SCLK is ignored when $\overline{C S}$ is high.

8.4.7.3 Data Input (DIN)

The data input pin (DIN) is used to input register data and commands to the ADS1284. Keep DIN low when reading conversion data in the read-data-continuous mode (except when issuing a SDATAC command). Data on DIN are shifted into the converter on the rising edge of SCLK.

8.4.7.4 Data Output (DOUT)

The data output pin (DOUT) is used to output data from the ADS1284. Data are shifted out on the falling edge of SCLK. When CS is high, the DOUT pin is in tristate.

ADS1284

SBAS943A -SEPTEMBER 2018-REVISED AUGUST 2019
www.ti.com

8.4.7.5 Serial Port Auto Timeout

The serial interface is reset each time $\overline{\mathrm{CS}}$ is taken high. However, for applications that tie $\overline{\mathrm{CS}}$ low, the serial port cannot be reset by taking $\overline{\mathrm{CS}}$ high. The ADS1284 provides a feature that automatically recovers the interface when a transmission is stopped or interrupted, or if a noise glitch appears on SCLK. To reset the serial interface remotely, hold SCLK low for 64 DRDY cycles. The reset of the serial interface results in termination of data transfer or commands in progress. After serial interface reset occurs, the next SCLK pulse starts a new communication cycle. To prevent remote reset of the interface, pulse SCLK at least once for every 64 DRDY pulses.

8.4.7.6 Data Ready ($\overline{D R D Y}$)

$\overline{\mathrm{DRDY}}$ is an output that is driven low when new conversion data are ready fir retrieval, as shown in Figure 59. When reading data in continuous mode, the read operation must be completed before four CLK periods before the next falling DRDY goes low again, or the data are overwritten with new conversion data. When reading data in command mode, the read operation can overlap the occurrence of the next DRDY without data corruption.

Figure 59. $\overline{\text { DRDY }}$ With Data Retrieval
$\overline{\mathrm{DRDY}}$ resets high on the first falling edge of SCLK. Figure 59 and Figure 60 show the function of $\overline{\mathrm{DRDY}}$ with and without data readback, respectively.
If data are not retrieved (no SCLK provided), $\overline{\text { DRDY }}$ pulses high for four $\mathrm{f}_{\text {CLK }}$ periods during the update time, as shown in Figure 60.
$\overline{\mathrm{DRDY}}$ remains active when $\overline{\mathrm{CS}}$ is high.

Figure 60. $\overline{\text { DRDY }}$ With No Data Retrieval

8.4.8 Data Format

The ADS1284 output data is 32 -bits in binary twos complement format, as shown in Table 18. The LSB of the data is a redundant sign bit: 0 for positive numbers and 1 for negative numbers. However, when the output is clipped to + FS, the LSB $=1$, and when the output is clipped to -FS , the $\mathrm{LSB}=0$. If desired, the data readback can be stopped at 24 bits. Note that in sinc-filter mode, the output data are scaled by $1 / 2$.

Table 18. Ideal Output Code Versus Input Signal

INPUT SIGNAL $\mathrm{V}_{\text {IN }}$ (AINP - AINN)	32-BIT IDEAL OUTPUT CODE ${ }^{(1)}$	
	FIR FILTER	SINC FILTER ${ }^{(2)}$
$>\frac{\mathrm{V}_{\mathrm{REF}}}{2 \times \mathrm{PGA}}$	7FFFFFFFh	See note ${ }^{(3)}$
$\frac{\mathrm{V}_{\mathrm{REF}}}{2 \times \mathrm{PGA}}$	7FFFFFFEh	3FFFFFFFh
$\frac{\mathrm{V}_{\mathrm{REF}}}{2 \mathrm{PGA} \times\left(2^{30}-1\right)}$	00000002h	00000001h
0	00000000h	00000000h
$\frac{-\mathrm{V}_{\text {REF }}}{2 \mathrm{PGA} \times\left(2^{30}-1\right)}$	FFFFFFFFh	FFFFFFFFh
$\frac{-\mathrm{V}_{\mathrm{REF}}}{2 \mathrm{PGA}} \times \frac{2^{30}}{2^{30}-1}$	80000001h	C0000000h
$<\frac{-\mathrm{V}_{\text {REF }}}{2 \mathrm{PGA}} \times \frac{2^{30}}{2^{30}-1}$	80000000h	See note ${ }^{(3)}$

(1) Excludes effects of noise, linearity, offset, and gain errors.
(2) Due to the reduction in oversampling ratio (OSR) related to high data rates, full 32 -bit resolution is not be available in sinc filter mode.
(3) In sinc-filter mode, the output does not clip at corresponding positive or negative code when the full-scale range is exceeded.

8.4.9 Reading Data

The ADS1284 provides two modes to read conversion data: read-data-continuous mode and read-data-bycommand mode.

8.4.9.1 Read-Data-Continuous Mode

In the read-data-continuous mode, conversion data are read from the ADC without need for the read command. This mode is the default mode at power-on. This mode is also enabled by the RDATAC command. When DRDY goes low, indicating that new data are available, the MSB of data is placed on DOUT, as shown in Figure 61. The data are read (latched) by the user on the rising edges of SCLK. At the first falling edge of SCLK, DRDY returns high. After 32 bits of data have been read, further SCLK transitions cause DOUT to go low. If desired, the read operation may be stopped at 24 bits. The entire data shift operation must be completed within four CLK periods before DRDY falls again or the data may be corrupted.
When a SDATAC command is issued, the $\overline{\text { DRDY }}$ output is blocked but the ADS1284 continues conversions. In stop continuous mode, the data is read by command.

(1) DOUT is in tristate when $\overline{\mathrm{CS}}$ is high. $\overline{\mathrm{CS}}$ can be tied low. See Figure 1 for $\overline{\mathrm{CS}}$ low to valid DOUT propagation time.

Figure 61. Read Data Continuous

Table 19. Timing Data for Figure 61

PARAMETER		MIN	TYP
$\mathrm{t}_{\text {DDPD }}$	$\overline{\text { DRDY }}$ to valid MSB on DOUT propagation delay ${ }^{(1)}$	MAX	UNIT

(1) DOUT is in tristate when $\overline{\mathrm{CS}}$ is high. Load on DOUT $=20 \mathrm{pF} \| 100 \mathrm{k} \Omega$.

8.4.9.2 Read-Data-By-Command Mode

Read-data-continuous mode is stopped by the SDATAC command and then places the ADC into read-data-bycommand mode. In read-data-by-command mode, an RDATA command is sent to the device in order to read each new conversion data (as shown in Figure 62). When the read data command is received (on the eighth SCLK rising edge), data are available to read only when $\overline{\text { DRDY }}$ subsequently goes low ($t_{\text {DR }}$). When $\overline{\mathrm{DRDY}}$ goes low, conversion data appear on DOUT. The data may be read on the rising edge of SCLK.

(1) DOUT is in tristate when $\overline{\mathrm{CS}}$ is high. $\overline{\mathrm{CS}}$ can be tied low. See Figure 1 for $\overline{\mathrm{CS}}$ low to SCLK rising edge time.

Figure 62. Read Data By Command, RDATA (t ${ }_{\text {DDPD }}$ timing is given in Table 19)
Table 20. Read Data Timing for Figure 62

PARAMETER									MIN	TYP	MAX	UNIT
t_{DR}	Time for new data after data read command	0	1	$\mathrm{f}_{\mathrm{DATA}}$								

8.4.10 One-Shot Operation

The ADS1284 can perform very power-efficient, one-shot conversions using the STANDBY command while under software control. Figure 63 shows this sequence. First, issue the STANDBY command to set the standby mode.
When ready to make a measurement, issue the WAKEUP command. When $\overline{\text { DRDY }}$ goes low, the fully-settled conversion data are ready and can be read directly in read-data-continuous mode. Afterwards, issue another STANDBY command. When ready for the next measurement, repeat the cycle starting with another WAKEUP command.

See Figure 56 and Table 17 for time to new data.
Figure 63. One-Shot Conversions Using the STANDBY Command

8.4.11 Offset and Full-Scale Calibration Registers

The conversion data can be scaled for offset and gain before yielding the final output code. As shown in Figure 64, the output of the digital filter is first subtracted by the offset register (OFC) and then multiplied by the full-scale register (FSC). Equation 15 shows the scaling:

Final Output Data $=($ Input - OFC[2:0] $) \times \frac{\text { FSC[2:0] }}{400000 \mathrm{~h}}$
The values of the offset and full-scale registers are set by writing to them directly, or they are set automatically by the calibration commands.
The offset and full-scale calibrations apply to specific PGA settings. When the PGA is changed, these registers generally require recalculation. Calibration is bypassed in the sinc filter mode.

Figure 64. Calibration Block Diagram

8.4.11.1 OFC[2:0] Registers

The 24-bit offset calibration word is composed of three 8-bit registers, as shown in Table 21. The offset register is left-justified to align with the 32 bits of conversion data. The offset is in twos complement format with a maximum positive value of 7FFFFFh and a maximum negative value of 800000 h . This value is subtracted from the conversion data. A register value of 00000h has no offset correction (default value).

Table 21. Offset Calibration Word

REGISTER	BYTE	BIT ORDER							
OFC0	LSB	B7	B6	B5	B4	B3	B2	B1	B0 (LSB)
OFC1	MID	B15	B14	B13	B12	B11	B10	B9	B8
OFC2	MSB	B23 (MSB)	B22	B21	B20	B19	B18	B17	B16

Although the offset calibration register value can correct offsets ranging from -FS to +FS (as shown in Table 22), in order to avoid input overload, do not exceed the maximum input voltage range of 106% FSR (including calibration).

Table 22. Offset Calibration Values

OFC REGISTER	FINAL OUTPUT CODE(1)
7FFFFFh	80000000 h
000001 h	FFFFFF00h
000000 h	00000000 h
FFFFFFh	00000100 h
800000 h	7FFFFF00h

(1) Full 32-bit final output code with zero code input.

8.4.11.2 FSC[2:0] Registers

The full-scale calibration is a 24 -bit word, composed of three 8 -bit registers, as shown in Table 23. The full-scale calibration value is 24 -bit, straight offset binary, normalized to 1.0 at code 400000 h .

Table 23. Full-Scale Calibration Word

REGISTER	BYTE	BIT ORDER							
FSC0	LSB	B7	B6	B5	B4	B3	B2	B1	B0 (LSB)
FSC1	MID	B15	B14	B13	B12	B11	B10	B9	B8
FSC2	MSB	B23 (MSB)	B22	B21	B20	B19	B18	B17	B16

Table 24 summarizes the scaling of the full-scale register. A register value of 400000 h (default value) has no gain correction (gain =1). Although the full-scale calibration register value corrects gain errors above one (gain correction < 1), the full-scale range of the analog inputs must not exceed 106\% FSR (including calibration) in order to avoid input overload.

Table 24. Full-Scale Calibration Register Values

FSC REGISTER	GAIN CORRECTION
800000 h	2.0
400000 h	1.0
200000 h	0.5
000000 h	0

8.4.12 Calibration Commands (OFSCAL and GANCAL)

Use the calibration commands (OFSCAL or GANCAL) to calibrate the conversion data. The values of the offset and gain calibration registers are internally written to perform calibration. The appropriate input signals must be applied to the ADS1284 inputs before sending the commands. Use slower data rates to achieve more consistent calibration results; this effect is a byproduct of the lower noise that these data rates provide. Also, if calibrating at power-on, be sure the reference voltage is fully settled.
Figure 65 shows the calibration command sequence. After the analog input voltage (and reference) have stabilized, send the SDATAC command, followed by the SYNC and RDATAC commands. DRDY goes low after 64 data periods. After DRDY goes low, send the SDATAC command, then the calibrate command (OFSCAL or GANCAL), followed by the RDATAC command. After 16 data periods, calibration is complete and conversion data can be read at this time. The SYNC input must remain high during the calibration sequence.

Figure 65. Offset and Gain Calibration Timing
The calibration commands apply to specific PGA settings. If the PGA is changed, recalibration is necessary. Calibration is bypassed in the sinc filter mode.

8.4.12.1 OFSCAL Command

The OFSCAL command performs an offset calibration. Before sending the OFSCAL command sequence (Figure 65), a zero input signal must be applied to the ADS1284 and the inputs allowed to stabilize. When the command sequence (Figure 65) is sent, the ADS1284 averages 16 readings, and then writes this value to the OFC register. The contents of the OFC register can be subsequently read or written. During offset calibration, the full-scale correction is bypassed. Use the OFSCAL command to calibrate the optional $100-\mathrm{mV}$ offset.

8.4.12.2 GANCAL Command

The GANCAL command performs a gain calibration. Before sending the GANCAL command sequence (Figure 65), a dc input must be applied (typically full-scale input, but not to exceed 106% full-scale). After the signal has stabilized, the command sequence can be sent. The ADS1284 averages 16 readings, then computes a gain value that scales the applied calibration voltage to full-scale. The gain value is written to the FSC register, where the contents are subsequently read or written.

ADS1284

8.4.13 User Calibration

System calibration of the ADS1284 can be performed without using the calibration commands. This procedure requires the calibration values to be externally calculated and then written to the calibration registers. The steps for this procedure are:

1. Set the OFSCAL[2:0] register $=0 \mathrm{~h}$, and GANCAL[2:0] $=400000 \mathrm{~h}$. These values set the offset and gain registers to 0 and 1 , respectively.
2. Apply a zero differential input to the input of the system. Wait for the system to settle and then average the output readings. Higher numbers of averaged readings result in more consistent calibration. Write the averaged value to the OFC register.
3. Apply a differential dc signal, or an ac signal (typically full-scale, but do not exceed 106% FSR). Wait for the system to settle and then average the output readings.
The value written to the FSC registers is calculated by Equation 16 or Equation 17.
DC-signal calibration is shown in Equation 16. The expected output code is based on 31-bit output data.

$$
\begin{equation*}
\text { FSC[2:0] }=400000 \mathrm{~h} \times\left(\frac{\text { Expected Output Code }}{\text { Actual Output Code }}\right) \tag{16}
\end{equation*}
$$

For ac-signal calibration, use an RMS value of collected data, as shown in Equation 17:

$$
\begin{equation*}
\text { FSC }[2: 0]=400000 \mathrm{~h} \times \frac{\text { Expected RMS Value }}{\text { Actual RMS Value }} \tag{17}
\end{equation*}
$$

ADS1284
www.ti.com

8.5 Programming

8.5.1 Commands

The commands listed in Table 25 control the operation of the ADS1284. Most commands are stand-alone (that is, one byte in length); the register read and write commands are two bytes long in addition to the actual register data bytes.

Table 25. Command Descriptions

COMMAND	TYPE	DESCRIPTION	1st COMMAND BYTE ${ }^{(1)(2)}$	2nd COMMAND BYTE ${ }^{(3)}$
WAKEUP	Control	Wake-up from standby mode	0000 000X (00h or 01h)	
STANDBY	Control	Enter standby mode	0000 001X (02h or 03h)	
SYNC	Control	Synchronize the analog-to-digital conversion	0000 010X (04h or 5h)	
RESET	Control	Reset registers to default values	0000 011X (06h or 07h)	
RDATAC	Control	Enter read data continuous mode	00010000 (10h)	
SDATAC	Control	Stop read data continuous mode	00010001 (11h)	
RDATA	Data	Read data by command ${ }^{(4)}$	00010010 (12h)	
RREG	Register	Read nnnnn register(s) at address $r r r r{ }^{(4)}$	$001 r r r r r(20 h+000 r ~ r r r r) ~$	000n nnnn (00h + n nnnn)
WREG	Register	Write nnnnn register(s) at address rrrrr	$010 r r r r r(40 \mathrm{~h}+000 r r r r r)$	000n nnnn (00h + n nnnn)
OFSCAL	Calibration	Offset calibration	01100000 (60h)	
GANCAL	Calibration	Gain calibration	01100001 (61h)	

(1) $X=$ don't care.
(2) $\quad r r r r=$ starting address for register read and write commands.
(3) $n n n n n=$ number of registers to be read from or written to -1 . For example, to read from or write to three registers, set $n n n n n=2$ (00010).
(4) Required to cancel read-data-continuous mode before sending a command.
$\overline{\mathrm{CS}}$ must remain low for duration of the command-byte sequence. A delay of $24 \mathrm{f}_{\mathrm{CLK}}$ cycles between commands and between bytes within a command is required, starting from the last SCLK rising edge of one command to the first SCLK rising edge of the following command. The required delay is shown in Figure 66.

(1) $\mathrm{t}_{\text {SCLKDLY }}=24 / \mathrm{f}_{\text {CLK }}(\mathrm{min})$.

Figure 66. Consecutive Commands

8.5.1.1 SDATAC Requirements

In read-data-continuous mode, the ADS1284 places conversion data on the DOUT pin as SCLK is applied. As a result of the potential conflict between conversion data and register data placed on DOUT resulting from a RREG or RDATA operation, it is necessary to send a stop-read-data-continuous (SDATAC) command before a RREG or RDATA command. The SDATAC command disables the direct output of conversion data on the DOUT pin. $\overline{\mathrm{CS}}=1$ cancels SDATAC mode; therefore, keep $\overline{\mathrm{CS}}$ held low after sending the SDATAC command to the next RREG or RDATA command.

8.5.1.2 WAKEUP: Wake-Up From Standby Mode

The WAKEUP command is used to exit the standby mode. After sending this command, the time for the first data to be ready is illustrated in Figure 56 and Table 18. Sending this command during normal operation has no effect; for example, reading data by the read-data-continuous mode with DIN held low.

8.5.1.3 STANDBY: Standby Mode

The STANDBY command places the ADS1284 into standby mode. In standby, the device enters a reduced power state where a low quiescent current remains to keep the register settings and serial interface active. The ADC remains in standby mode until CS is taken high or the WAKEUP command is sent. For complete device shutdown, take the PWDN pin low (register settings are not saved). The operation of standby mode is shown in Figure 67.

Figure 67. STANDBY Command Sequence

8.5.1.4 SYNC: Synchronize the Analog-to-Digital Conversion

The SYNC command synchronizes the analog-to-digital conversion. Upon receiving the command, the reading in progress is cancelled and the conversion process is restarted. In order to synchronize multiple ADS1284s, the command must be sent simultaneously to all devices. The SYNC pin must be held high during this command.

8.5.1.5 RESET: Reset the Device

The RESET command resets the registers to default values, enables read-data-continuous mode, and restarts the conversion process. The RESET command is functionally equivalent to taking the RESET pin low. See Figure 55 for the RESET command timing.

8.5.1.6 RDATAC: Read Data Continuous

The RDATAC command enables read-data-continuous mode (default mode). In this mode, conversion data is read from the device directly without the need to supply a data read command. Each time DRDY falls low, new data are available to read. See the Read-Data-Continuous Mode section for more details.

8.5.1.7 SDATAC: Stop Read Data Continuous

The SDATAC command stops read-data-continuous mode. Exit read-data-continuous mode before sending register and data read commands. The SDATAC command suppresses the DRDY output, but the ADS1284 continues conversions. Take $\overline{\mathrm{CS}}$ high to cancel SDATAC mode.

8.5.1.8 RDATA: Read Data by Command

The RDATA command reads the conversion data. See the Read-Data-By-Command Mode section for more details.

8.5.1.9 RREG: Read Register Data

The RREG command is used to read single- or multiple-register data. The command consists of a two-byte opcode argument, followed by the output of register data. The first byte of the opcode includes the starting address, and the second byte specifies the number of registers to read minus one.

First command byte: 001r rrrr, where rrrrr is the starting address of the first register.
Second command byte: 000 n nnnn, where nnnnn is the number of registers to read minus one.
Starting with the 16th falling edge of SCLK, the register data appear on DOUT. Read the data on the 17th SCLK rising edge.
The RREG command is illustrated in Figure 68.
A delay of $24 \mathrm{f}_{\text {CLK }}$ cycles is required between each byte transaction.

Figure 68. Read Register Data (Table 26 shows $\mathrm{t}_{\mathrm{DLY}}$)

Table 26. $\mathrm{t}_{\mathrm{DRY}}$ Value

PARAMETER	MIN
$\mathrm{t}_{\text {DLY }}$	$24 / \mathrm{f}_{\text {CLK }}$

8.5.1.10 WREG: Write to Register

The WREG command writes single- or multiple-register data. The command consists of a two-byte op-code argument followed by the input of register data. The first byte of the op-code contains the starting address and the second byte specifies the number of registers to write minus one.
First command byte: 010r rrrr, where rrrrr is the starting address of the first register.
Second command byte: 000 n nnnn, where nnnnn is the number of registers to write minus one.
Data byte(s): one or more register data bytes, depending on the number of registers specified.
Figure 69 illustrates the WREG command.
A delay of $24 \mathrm{f}_{\text {CLK }}$ cycles is required between each byte transaction.

Example: Write six registers, starting at register 05h (OFC0)
Command Byte $1=01000101$
Command Byte $2=00000101$
(1) $\overline{\mathrm{CS}}$ can be tied low. See Figure 1 for $\overline{\mathrm{CS}}$ low to SCLK rising edge time.

Figure 69. Write Register Data (Table 26 shows $\mathrm{t}_{\mathrm{DLY}}$)

8.5.1.11 OFSCAL: Offset Calibration

The OFSCAL command performs an offset calibration. The inputs to the converter (or the inputs to the external preamplifier) should be zeroed and allowed to stabilize before sending this command. The offset calibration register updates after this operation. See the Calibration Commands section for more details.

8.5.1.12 GANCAL: Gain Calibration

The GANCAL command performs a gain calibration. The inputs to the converter should have a stable dc input (typically full-scale, but not to exceed 106\% full-scale). The gain calibration register updates after this operation. See the Calibration Commands section for more details.

ADS1284
www.ti.com

8.6 Register Maps

Collectively, the registers contain all the information needed to configure the device, such as data rate, filter selection, calibration, and more. The registers are accessed by the RREG and WREG commands. The registers can be accessed individually or as a block of registers by sending or receiving consecutive bytes. After a register write operation, the ADC resets, resulting in an interruption of 63 readings.

Table 27. Register Map

ADDRESS	REGISTER	RESET VALUE	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
00h	ID_CFG	X0h	ID3	ID2	ID1	ID0	0	0	OFFSET1	OFFSET0
01h	CONFIG0	52h	SYNC	MODE	DR2	DR1	DR0	PHASE	FILTR1	FILTR0
02h	CONFIG1	08h	0	MUX2	MUX1	MUX0	CHOP	PGA2	PGA1	PGA0
03h	HPF0	32h	HPF07	HPF06	HPF05	HPF04	HPF03	HPF02	HPF01	HPF00
04h	HPF1	03h	HPF15	HPF14	HPF13	HPF12	HPF11	HPF10	HPF09	HPF08
05h	OFC0	00h	OFC07	OFC06	OFC05	OFC04	OFC03	OFC02	OFC01	OFC00
06h	OFC1	00h	OFC15	OFC14	OFC13	OFC12	OFC11	OFC10	OFC09	OFC08
07h	OFC2	00h	OFC23	OFC22	OFC21	OFC20	OFC19	OFC18	OFC17	OFC16
08h	FSC0	00h	FSC07	FSC06	FSC05	FSC04	FSC03	FSC02	FSC01	FSC00
09h	FSC1	00h	FSC15	FSC14	FSC13	FSC12	FSC11	FSC10	FSC09	FSC08
OAh	FSC2	40h	FSC23	FSC22	FSC21	FSC20	FSC19	FSC18	FSC17	FSC16

8.6.1 Register Descriptions

8.6.1.1 ID_CFG: ID_Configuration Register (address = 00h) [reset =x0h]

Figure 70. ID_CFG Register

7	6	5	4	3	2	1	0
ID3	ID2	ID1	ID0	0	0	OFFSET1	OFFSET0
R-xh	R-xh	R-xh	R-xh	R/W-Oh	R/W-0h	R/W-Oh	R/W-Oh

LEGEND: R/W = Read/Write; $R=$ Read only; $-n=$ value after reset

Bit[7:4] ID[3:0]

Factory-programmed identification bits (read-only). The ID bits are subject to change without notification.
Bit[3:2]
Reserved
Always write 00
Bit[1:0] OFFSET[1:0] (see Offset section)
00: Offset disabled (default)
01: Reserved
10: Offset $=100 /$ PGA mV
11: Offset $=75 /$ PGA mV

ADS1284
SBAS943A -SEPTEMBER 2018-REVISED AUGUST 2019

8.6.1.2 CONFIGO: Configuration Register 0 (address $=01 \mathrm{~h}$) [reset $=52 \mathrm{~h}]$

Figure 71. CONFIGO Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYNC | MODE | DR2 | DR1 | DR0 | PHASE | FILTR1 |
| R/W-0h | R/W-1h | R/W-0h | R/W-1h | R/W-0h | R/W-0h | R/W -1h |

LEGEND: R/W = Read/Write; R = Read only; $-\mathrm{n}=$ value after reset

Bit[7]

SYNC

Synchronization mode bit.
0 : Pulse-sync mode (default)
1: Continuous-sync mode
Bit[6] MODE
Mode Control
0: Low-power mode
1: High-resolution mode (default)
Bit[5:3] DR[2:0]
Data rate select bits.
000: 250 SPS
001: 500 SPS
010: 1000 SPS (default)
011: 2000 SPS
100: 4000 SPS
Bit[2]
PHASE
FIR phase response bit.
0 : Linear phase (default)
1: Minimum phase
Bit[1:0] FILTR[1:0]
Digital filter configuration bits.
00: Reserved
01: Sinc filter block only
10: Sinc + LPF filter blocks (default)
11: Sinc + LPF + HPF filter blocks

8.6.1.3 CONFIG1: Configuration Register 1 (address $=02 \mathrm{~h}$) [reset $=08 \mathrm{~h}]$

Figure 72. CONFIG1 Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | MUX2 | MUX1 | MUX0 | CHOP | PGA2 | PGA1 |
| R/W-0h | R/W-0h | R/W-0h | R/W-0h | R/W-1h | R/W-0h | R/W-0h |

LEGEND: R/W = Read/Write; R = Read only; $-\mathrm{n}=$ value after reset

Bit[7]

Bit[6:4]

Reserved

Always write 0
MUX[2:0]
MUX select bits.
000: AINP1 and AINN1 (default)
001: AINP2 and AINN2
010: Internal short through 400- Ω resistor
011: AINP1 and AINN1 connected to AINP2 and AINN2
100: External short to AINN2
Bit[3]
CHOP
PGA chopping enable bit.
0 : PGA chopping disabled
1: PGA chopping enabled (default)
Bit[2:0] PGA[2:0]
PGA gain select bits.
000: $G=1$ (default)
001: $G=2$
010: $G=4$
011: $G=8$
100: $G=16$
101: $G=32$
110: $G=64$

8.6.1.4 HPFO and HPF1 Registers

These two bytes (high-byte and low-byte, respectively) set the corner frequency of the high-pass filter.
8.6.1.4.1 HPFO: High-Pass Filter Corner Frequency, Low Byte (address $=03 \mathrm{~h}$) [reset $=\mathbf{3 2 h}$]

Figure 73. HPFO Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HPF07 | HPF06 | HPF05 | HPF04 | HPF03 | HPF02 | HPF01 |
| R/W-0h | R/W-0h | R/W-1h | R/W-1h | R/W-0h | R/W-0h | R/W-1h |

LEGEND: R/W = Read/Write; $\mathrm{R}=$ Read only; $-\mathrm{n}=$ value after reset
8.6.1.4.2 HPF1: High-Pass Filter Corner Frequency, High Byte (address $=04 \mathrm{~h})$ [reset $=03 \mathrm{~h}]$

Figure 74. HPF1 Register

7	6	5	4	3	2	1	0
HPF15	HPF14	HPF13	HPF12	HPF11	HPF10	HPF09	HPF08
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-1h	1R/W-1h

LEGEND: R/W = Read/Write; $\mathrm{R}=$ Read only; $-\mathrm{n}=$ value after reset

8.6.1.5 OFCO, OFC1, OFC2 Registers

These three bytes set the offset calibration value.
8.6.1.5.1 OFCO: Offset Calibration, Low Byte (address $=05 \mathrm{~h}$) [reset $=00 \mathrm{~h}]$

Figure 75. OFCO Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OFC07 | OFC06 | OFC05 | OFC04 | OFC03 | OFC02 | OFC01 | OFC00 |
| R/W-Oh |

LEGEND: R/W = Read/Write; R = Read only; $-\mathrm{n}=$ value after reset
8.6.1.5.2 OFC1: Offset Calibration, Mid Byte (address $=06 \mathrm{~h}$) [reset $=00 \mathrm{~h}]$

Figure 76. OFC1 Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OFC15 | OFC14 | OFC13 | OFC12 | OFC11 | OFC10 | OFC09 | OFC08 |
| R/W-Oh | R/W-0h | R/W-0h | R/W-0h | R/W-0h | R/W-0h | R/W-Oh | R/W-Oh |

LEGEND: R/W = Read/Write; $\mathrm{R}=$ Read only; $-\mathrm{n}=$ value after reset
8.6.1.5.3 OFC2: Offset Calibration, High Byte (address $=07 \mathrm{~h}$) [reset $=00 \mathrm{~h}]$

Figure 77. OFC2 Register

7	6	5	4	3	2	1	0
OFC23	OFC22	OFC21	OFC20	OFC19	OFC18	OFC17	OFC16
R/W-Oh	R/W-0h	R/W-0h	R/W-0h	R/W-Oh	R/W-0h	R/W-Oh	R/W-Oh

LEGEND: R/W = Read/Write; R = Read only; $-\mathrm{n}=$ value after reset

8.6.1.6 FSCO, FSC1, FSC2 Registers

These three bytes set the full-scale calibration value.

8.6.1.6.1 FSCO: Full-Scale Calibration, Low Byte (address $=08 \mathrm{~h}$) [reset $=00 \mathrm{~h}]$

Figure 78. FSCO Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FSC07 | FSC06 | FSC05 | FSC04 | FSC03 | FSC02 | FSC01 |
| R/W-0h |

LEGEND: R/W = Read/Write; R = Read only; $-\mathrm{n}=$ value after reset

8.6.1.6.2 FSC1: Full-Scale Calibration, Mid Byte (address $=09 \mathrm{~h}$) [reset $=00 \mathrm{~h}]$

Figure 79. FSC1 Register

7	6	5	4	3	2	1	0
FSC15	FSC14	FSC13	FSC12	FSC11	FSC10	FSC09	FSC08
R/W-Oh	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-Oh

LEGEND: R/W = Read/Write; $\mathrm{R}=$ Read only; $-\mathrm{n}=$ value after reset

8.6.1.6.3 FSC2: Full-Scale Calibration, High Byte (address $=0 \mathrm{Ah}$) [reset $=40 \mathrm{~h}]$

Figure 80. FSC2 Register

7	6	5	4	3	2	1	0
FSC23	FSC22	FSC21	FSC20	FSC19	FSC18	FSC17	FSC16
R/W-0h	R/W-1h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-Oh	R/W-Oh

LEGEND: R/W = Read/Write; R = Read only; $-\mathrm{n}=$ value after reset

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The ADS1284 is a very high-resolution ADC with two modes of operation that provide tradeoffs between power consumption and SNR performance. Optimal performance requires giving special attention to the support circuitry and printed circuit board (PCB) design. Locate noisy digital components (such as microcontrollers, oscillators, and so on) in an area of the PCB away from the converter and front-end components. Keep the digital current path short and separate from sensitive analog components by placing the digital components close to the power-entry point.

9.2 Typical Applications

9.2.1 Geophone Interface

A typical geophone front-end application is shown in Figure 81. The application diagram shows the ADS1284 operation with dual $\pm 2.5-\mathrm{V}$ analog supplies. The ADS1284 can also operate with a single $5-\mathrm{V}$ analog supply.

(1) Optional external diode clamps.
(2) Optional reference noise filter.

Figure 81. Geophone Interface Application

Typical Applications (continued)

The geophone input signal is filtered by both a differential filter (components C_{4} and R_{1} to R_{4}) and by commonmode filters (components $\mathrm{C}_{2}, \mathrm{C}_{3}$ and $\mathrm{R}_{1}, \mathrm{R}_{2}$). The differential filter removes high-frequency normal-mode components from the input signal. The common-mode filters remove high-frequency components that are common to both input leads. The input filters are not required for all applications; check the system requirements for each application.
Resistors R_{5} and R_{6} bias the signal input to the midsupply point (ground). For single-supply operation, set the bias to a low impedance midsupply point (AVDD / $2=2.5 \mathrm{~V}$).
Optional diode clamps protect the ADS1284 inputs from high-level voltage transients and overloads. The diodes provide additional protection if possible high-level input transients and surges exceed the ADC internal ESD diode rating.
The REF5050 5-V reference provides the reference to the ADC. An optional filter network $®_{7}$ and C_{5}) reduces the in-band reference noise for improved dynamic performance. However, the RC filter network increases the filter settling-time (from seconds to possibly minutes) depending on the dielectric absorption properties of capacitor C_{5}. Capacitor C_{7} is mandatory and provides high-frequency bypassing of the reference inputs; place C_{7} as close as possible to the ADS1284 pins. Resistor $\mathrm{R}_{7}(1 \mathrm{k} \Omega)$ results in a 1% systematic gain error. Multiple ADCs can share a single reference, but if shared, use independent reference filters for each ADC.

As an alternative, the REF5045 (4.5 V) reference can be used. The REF5045 reference has the advantage of operating directly from the $5-\mathrm{V}$ (total) power supply; however, the $4.5-\mathrm{V}$ reference reduces signal range by 10% and results in a $1-\mathrm{dB}$ loss of SNR.

Capacitor C_{6} (10 nF) filters the PGA output glitches caused by sampling of the modulator. This capacitor also forms an antialias filter with a low-pass cutoff frequency of 26 kHz .

Typical Applications (continued)

9.2.2 Digital Interface

Figure 82 shows the digital connection to a controller (field programmable gate array or microcontroller). In this example, two ADCs are shown connected to one controller. The ADCs share the same serial interface (SCLK, DIN, and DOUT). The ADC is selected for communication by strobing each CS low. The DRDY output from both ADCs can be used; however, when the devices are synchronized, the DRDY output from only one device is sufficient.

(1) For DVDD < 2.25 V, tie DVDD and BYPASS together. see the DVDD Power Supply section.

Figure 82. Controller Interface with Dual ADCs
The modulator overrange flag (MFLAG) from each device ties to the controller input. For synchronization, connect all ADCs to the same SYNC signal. For reset, either connect all ADCs to the same RESET signal or connect the ADCs to individual RESET signals.
Avoid ringing on the digital inputs to the ADCs. Place $47-\Omega$ resistors in series with the digital traces to help reduce ringing by controlling impedances. Place the resistors at the source (driver) end of the trace. Do not float unused digital inputs; tie them to DVDD or GND.

9.3 Initialization Set Up

After reset or power-on, configure the registers using the following procedure:

1. Reset the serial interface. Before using the serial interface, it may be necessary to recover the serial interface (undefined I/O power-up sequencing may cause a false SCLK to occur). To reset the interface, toggle the $\overline{C S}$ pin high then low, or toggle the RESET pin high then low, or when in read-data-continuous mode, hold SCLK low for 64 DRDY periods.
2. Configure the registers. The registers are configured by either writing to them individually or as a group, and can be configured in either mode. To cancel read-data-continuous mode, send the SDATAC command before register read and write operations .
3. Verify register data. For verification of device communications, read back the register.
4. Set the data mode. After register configuration, configure the device for read-data-continuous mode by executing the RDATAC command, or configure for read-data-by-command mode (set in step 2, by the SDATAC command).
5. Synchronize readings. Whenever SYNC is high, the ADS1284 freely runs the data conversions. To resynchronize the conversions in pulse-sync mode, take SYNC low and then high. In continuous-sync mode, apply the synchronizing clock to the SYNC pin with a clock period equal to multiples of the ADC conversion period.
6. Read data. If read-data-continuous mode is active, the data are read directly after $\overline{\overline{D R D Y}}$ falls by applying SCLK pulses. If the read-data-continuous mode is inactive, the data can only be read by executing the RDATA command. The RDATA command must be sent in this mode to read each conversion result.

10 Device and Documentation Support

10.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E ${ }^{\text {TM }}$ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

10.3 Trademarks

E2E is a trademark of Texas Instruments.
SPI is a trademark of Motorola Inc.
All other trademarks are the property of their respective owners.

10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.5 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

MECHANICAL DATA

RHF (R-PVQFN-N24) PLASTIC QUAD FLATPACK NO-LEAD

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \phi & 0,10 \circledast & \mathbb{M} & \mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
\hline & 0,05 \mathbb{M} & \mathrm{C} & \\
\hline
\end{array}
$$

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) Package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-220.

THERMAL PAD MECHANICAL DATA

NOTE: All linear dimensions are in millimeters

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
ADS1284IRHFR	ACTIVE	VQFN	RHF	24	3000	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \hline \text { ADS } \\ & 1284 \\ & \hline \end{aligned}$	Samples
ADS1284IRHFT	ACTIVE	VQFN	RHF	24	250	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { ADS } \\ & 1284 \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
ADS1284IRHFR	VQFN	RHF	24	3000	330.0	12.4	4.3	5.3	1.3	8.0	12.0	Q1
ADS1284IRHFT	VQFN	RHF	24	250	180.0	12.4	4.3	5.3	1.3	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS1284IRHFR	VQFN	RHF	24	3000	367.0	367.0	35.0
ADS1284IRHFT	VQFN	RHF	24	250	210.0	185.0	35.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

SOLDER MASK DETAILS

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271)
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RHF0024A

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
EXPOSED PAD 25
75\% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE SCALE:20X

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to TI's Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

[^0]: (1) CLK rising edge to SYNC rising edge timing must not occur within the specified time window.
 (2) Continuous-sync mode; a free-running clock applied to the SYNC input without causing resynchronization. See Figure 54

