ADC081500 High Performance, Low Power, 8-Bit, 1.5 GSPS A/D Converter
 Check for Samples: ADC081500

FEATURES

- Internal Sample-and-Hold
- Single $+1.9 \mathrm{~V} \pm 0.1 \mathrm{~V}$ Operation
- Choice of SDR or DDR Output Clocking
- Multiple ADC Synchronization Capability
- Ensured No Missing Codes
- Serial Interface for Extended Control
- Fine Adjustment of Input Full-Scale Range and Offset
- Duty Cycle Corrected Sample Clock

APPLICATIONS

- Direct RF Down Conversion
- Digital Oscilloscopes
- Satellite Set-Top Boxes
- Communications Systems
- Test Instrumentation

KEY SPECIFICATIONS

- Resolution 8 Bits
- Max Conversion Rate 1.5 GSPS (min)
- Bit Error Rate 10^{-18} (typ)
- ENOB @ 748 MHz Input 7.3 Bits (typ)
- DNL ± 0.15 LSB (typ)
- Power Consumption
- Operating 1.2 W (typ)
- Power Down Mode 3.5 mW (typ)

DESCRIPTION

The ADC081500 is a low power, high performance CMOS analog-to-digital converter that digitizes signals to 8 bits resolution at sample rates up to 1.7 GSPS. Consuming a typical 1.2 W at 1.5 GSPS from a single 1.9 Volt supply, this device is ensured to have no missing codes over the full operating temperature range. The unique folding and interpolating architecture, the fully differential comparator design, the innovative design of the internal sample-and-hold amplifier and the selfcalibration scheme enable a very flat response of all dynamic parameters beyond Nyquist, producing a high 7.3 ENOB with a 748 MHz input signal and a 1.5 GHz sample rate while providing a 10^{-18} B.E.R. Output formatting is offset binary and the LVDS digital outputs are compatible with IEEE 1596.3-1996, with the exception of an adjustable output offset voltage between 0.8 V and 1.2 V .
The converter output has a 1:2 demultiplexer that feeds two LVDS buses and reduces the output data rate on each bus to one-half the sample rate.
The converter typically consumes less than 3.5 mW in the Power Down Mode and is available in a 128lead, thermally enhanced exposed pad HLQFP and operates over the Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$ temperature range.

[^0]
Block Diagram

Pin Configuration

* Exposed pad on back of package must be soldered to ground plane to ensure rated performance.

Pin Descriptions and Equivalent Circuits
Pin Functions

Pin Descriptions and Equivalent Circuits (continued)

Pin Functions			
Pin No.	Symbol	Equivalent Circuit	Description
127	$\frac{\text { CalDly / }}{\text { SCS }}$		Calibration Delay and Serial Interface Chip Select. With a logic high or low on pin 14, this pin functions as Calibration Delay and sets the number of input clock cycles after power up before calibration begins (See Self-Calibration). With pin 14 floating, this pin acts as the enable pin for the serial interface input and the CalDly value becomes "0" (short delay with no provision for a long power-up calibration delay).
$\begin{aligned} & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & \text { CLK+ } \\ & \text { CLK- } \end{aligned}$		LVDS Clock input pins for the ADC. The differential clock signal must be a.c. coupled to these pins. The input signal is sampled on the falling edge of CLK+. See THE CLOCK INPUTS.
$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}} \\ & \mathrm{V}_{\mathrm{IN}^{-}} \end{aligned}$		Analog signal inputs to the ADC. The differential full-scale input range of this input is programmable using the FSR pin 14 in normal mode and the Input Full-Scale Voltage Adjust register in the extended control mode. Refer to the V_{IN} specification in the Converter Electrical Characteristics for the full-scale input range in the normal mode. Refer to Table 6 for the full-scale input range in the extended control mode.
7	$\mathrm{V}_{\text {CMO }}$		Common Mode Voltage. The voltage output at this pin is required to be the common mode input voltage at $\mathrm{V}_{\mathrm{IN}^{+}}$and $\mathrm{V}_{\text {IN }}-$ when d.c. coupling is used. This pin should be grounded when a.c. coupling is used at the analog inputs. This pin is capable of sourcing or sinking $100 \mu \mathrm{~A}$. See THE ANALOG INPUT.

Pin Descriptions and Equivalent Circuits (continued)

Pin Functions			
Pin No.	Symbol	Equivalent Circuit	Description
31	$V_{B G}$		Bandgap output voltage capable of $100 \mu \mathrm{~A}$ source/sink.
126	CalRun		Calibration Running indication. This pin is at a logic high when calibration is running.
32	$\mathrm{R}_{\text {EXt }}$		External bias resistor connection. Nominal value is 3.3 k Ohms ($\pm 0.1 \%$) to ground. See Self-Calibration.
$\begin{aligned} & 34 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { Tdiode_P } \\ & \text { Tdiode_N } \end{aligned}$		Temperature Diode Positive (Anode) and Negative (Cathode). These pins may be used for die temperature measurements, however no specified accuracy is implied or specified. See Thermal Management.

Pin Descriptions and Equivalent Circuits (continued)

Pin Functions			
Pin No.	Symbol	Equivalent Circuit	Description
83 84 85 86 89 90 91 92 93 94 95 96 100 101 102 103 103	$\begin{aligned} & \text { D7- } \\ & \text { D77 } \\ & \text { D6- } \\ & \text { D6+ } \\ & \text { D5- } \\ & \text { D5+ } \\ & \text { D4- } \\ & \text { D4+ } \\ & \text { D3- } \\ & \text { D3+ } \\ & \text { D2- } \\ & \text { D2+ } \\ & \text { D1- } \\ & \text { D1+ } \\ & \text { D0- } \\ & \text { D0+ } \end{aligned}$		The LVDS Data Outputs that are not delayed in the output demultiplexer. Compared with the Dd outputs, these outputs represent the later time samples. These outputs should always be terminated with a 100Ω differential resistor.
$\begin{aligned} & 104 \\ & 105 \\ & 106 \\ & 107 \\ & 111 \\ & 112 \\ & 113 \\ & 114 \\ & 115 \\ & 116 \\ & 117 \\ & 118 \\ & 122 \\ & 123 \\ & 124 \\ & 125 \end{aligned}$	Dd7- Dd7+ Dd6- Dd6+ Dd5- Dd5+ Dd4- Dd4- Dd4+ Dd3- Dd3+ Dd2- Dd2+ Dd1- Dd1+ Dd0 Dd0		The LVDS Data Outputs that are delayed by one CLK cycle in the output demultiplexer. Compared with the D outputs, these outputs represent the earlier time sample. These outputs should always be terminated with a 100Ω differential resistor.
$\begin{aligned} & 79 \\ & 80 \end{aligned}$	$\begin{aligned} & \text { OR+ } \\ & \text { OR- } \end{aligned}$		Out Of Range output. A differential high at these pins indicates that the differential input is out of range (outside the range $\pm \mathrm{V}_{\mathbb{I}} / 2$ as programmed by the FSR pin in nonextended control mode or the Input Full-Scale Voltage Adjust register setting in the extended control mode).
$\begin{aligned} & 82 \\ & 81 \end{aligned}$	DCLK+ DCLK		Differential Clock outputs used to latch the output data. Delayed and non-delayed data outputs are supplied synchronous to this signal. This signal is at $1 / 2$ the input clock rate in SDR mode and at $1 / 4$ the input clock rate in the DDR mode. The DCLK outputs are not active during a calibration cycle. The DCLK outputs are not active during a calibration cycle, therefore this is not recommended as a system clock.
$\begin{gathered} 2,5,8,13,16,17,20 \\ 25,28,33,128 \end{gathered}$	$\mathrm{V}_{\text {A }}$		Analog power supply pins. Bypass these pins to ground.
$\begin{gathered} 40,51,62,73,88,99 \\ 110,121 \end{gathered}$	$V_{\text {DR }}$		Output Driver power supply pins. Bypass these pins to DR GND.
$\underset{41}{1,6,9,12,21,24,27,}$	GND		Ground return for V_{A}.
$\begin{array}{\|c} 42,53,64,74,87,97, \\ 108,119 \end{array}$	DR GND		Ground return for V_{DR}.
$\begin{gathered} 22,23,29,36-39,43- \\ 50,52,54-61,63,65 \\ 72,75-78,98,109, \\ 120 \end{gathered}$	NC		No Connection. Make no connection to these pins.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings ${ }^{(1)(2)(3)}$

Supply Voltage ($\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{DR}}$)		2.2 V	
Supply Difference$V_{D R}-V_{A}$		0 V to 100 mV	
Voltage on Any Input Pin (Except $\mathrm{V}_{\mathbb{I N}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$)		-0.15 V to $\left(\mathrm{V}_{\mathrm{A}}+0.15 \mathrm{~V}\right)$	
Voltage on $\mathrm{V}_{\mathrm{IN}^{+}}$, $\mathrm{V}_{\mathrm{IN}^{-}}$ (Maintaining Common Mode)		-0.15V to 2.5V	
Ground Difference \|GND - DR GND			0 V to 100 mV
Input Current at Any Pin ${ }^{(4)}$		$\pm 25 \mathrm{~mA}$	
Package Input Current ${ }^{(4)}$		$\pm 50 \mathrm{~mA}$	
Power Dissipation at $\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		2.0 W	
ESD Susceptibility ${ }^{(5)}$	Human Body Model	2500 V	
	Machine Model	250 V	
Soldering Temperature, Infrared, 10 seconds, (Applies to standard plated package only)		$235{ }^{\circ} \mathrm{C}$	
Storage Temperature		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

(1) All voltages are measured with respect to $G N D=D R G N D=0 \mathrm{~V}$, unless otherwise specified.
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. There is no specification of operation at the Absolute Maximum Ratings. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(4) When the input voltage at any pin exceeds the power supply limits (that is, less than GND or greater than V_{A}), the current at that pin should be limited to 25 mA . The 50 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 25 mA to two. This limit is not placed upon the power, ground and digital output pins.
(5) Human body model is 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor. Machine model is 220 pF discharged through ZERO Ohms.

Operating Ratings ${ }^{(1)(2)}$

Ambient Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	
Supply Voltage (V_{A})	+1.8 V to +2.0 V	
Driver Supply Voltage (V_{DR})	+1.8 V to V_{A}	
Analog Input Common Mode Voltage	$\mathrm{V}_{\text {CMO }} \pm 50 \mathrm{mV}$	
$\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$Voltage Range (Maintaining Common Mode)	0 V to 2.15 V (100\% duty cycle) 0 V to 2.5 V (10\% duty cycle)	
Ground Difference (\|GND - DR GND)	OV
CLK Pins Voltage Range	0 V to V_{A}	
Differential CLK Amplitude	$0.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ to $2.0 \mathrm{~V}_{\text {P-P }}$	

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. There is no specification of operation at the Absolute Maximum Ratings. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
(2) All voltages are measured with respect to $\mathrm{GND}=\mathrm{DR}$ GND $=0 \mathrm{~V}$, unless otherwise specified.

Package Thermal Resistance ${ }^{(1)}$

Package	$\boldsymbol{\theta}_{\mathbf{J A}}$	$\boldsymbol{\theta}_{\mathbf{J C} \text { (Top of Package) }}$	$\boldsymbol{\theta}_{\mathrm{J}-\mathrm{PAD} \text { (Thermal Pad) }}$
128 -Lead Exposed Pad HLQFP	$26^{\circ} \mathrm{C} / \mathrm{W}$	$10^{\circ} \mathrm{C} / \mathrm{W}$	$2.8^{\circ} \mathrm{C} / \mathrm{W}$

(1) Soldering process must comply with Tl's Reflow Temperature Profile specifications. Refer to www.ti.com/packaging..

Converter Electrical Characteristics

The following specifications apply after calibration for $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DR}}=+1.9 \mathrm{~V}_{\mathrm{DC}}$, OutV $=1.9 \mathrm{~V}$, V_{IN} (a.c. coupled) Full Scale Range $=$ differential $870 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$, Differential (a.c. coupled) sinewave input clock, $\mathrm{f}_{\mathrm{CLK}}=1.5 \mathrm{GHz}$ at $0.5 \mathrm{~V}_{\text {P-P }}$ with 50% duty cycle, $\mathrm{V}_{\mathrm{BG}}=$ Floating, Normal Control Mode, Single Data Rate Mode, $\mathrm{R}_{\mathrm{EXT}}=3300 \Omega \pm 0.1 \%$, Analog Signal Source Impedance $=100 \Omega$ Differential. Boldface limits apply for $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$. All other limits $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted. ${ }^{(1)(2)}$

Symbol	Parameter	Conditions	Typical $^{(3)}$	Limits ${ }^{(3)}$	Units (Limits)

STATIC CONVERTER CHARACTERISTICS

INL	Integral Non-Linearity (Best fit)	DC Coupled, 1 MHz Sine Wave Over ranged	± 0.3	± 0.9	LSB (max)
DNL	Differential Non-Linearity	DC Coupled, 1 MHz Sine Wave Over ranged	± 0.15	± 0.6	LSB (max)
	Resolution with No Missing Codes			8	Bits
$V_{\text {OFF }}$	Offset Error		-0.45	$\begin{gathered} -1.5 \\ 1.0 \end{gathered}$	LSB (min)
V ${ }_{\text {OFF_ADJ }}$	Input Offset Adjustment Range	Extended Control Mode	± 45		mV
PFSE	Positive Full-Scale Error	See ${ }^{(4)}$	-0.6	± 25	mV (max)
NFSE	Negative Full-Scale Error	See ${ }^{(4)}$	-1.31	± 25	mV (max)
FS_ADJ	Full-Scale Adjustment Range	Extended Control Mode	± 20	± 15	\%FS
DYNAMIC CONVERTER CHARACTERISTICS					
FPBW	Full Power Bandwidth		1.7		GHz
B.E.R.	Bit Error Rate		10^{-18}		Error/Sample
	Gain Flatness	d.c. to 500 MHz	± 0.5		dBFS
		d.c. to 1 GHz	± 1.0		dBFS
ENOB	Effective Number of Bits	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=373 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \\ & \mathrm{f}_{\mathrm{IN}}=748 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.3 \end{aligned}$	7.0	Bits (min) Bits (min)
SINAD	Signal-to-Noise Plus Distortion Ratio	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=373 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \\ & \mathrm{f}_{\mathrm{IN}}=748 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 46.3 \\ & 45.4 \\ & \hline \end{aligned}$	43.9	$\mathrm{dB}(\mathrm{min})$ dB (min)
SNR	Signal-to-Noise Ratio	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=373 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \\ & \mathrm{f}_{\mathrm{IN}}=748 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline 47 \\ 46.3 \\ \hline \end{gathered}$	44.5	dB (min) dB (min)
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=373 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \\ & \mathrm{f}_{\mathrm{IN}}=748 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline-54.5 \\ -53 \\ \hline \end{gathered}$	-47	dB (max) dB (max)
2nd Harm	Second Harmonic Distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=373 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \\ & \mathrm{f}_{\mathrm{IN}}=748 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -60 \\ & -57 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

(1) The analog inputs are protected as shown below. Input voltage magnitudes beyond the Absolute Maximum Ratings may damage this device.

(2) To specify accuracy, it is required that V_{A} and $V_{D R}$ be well bypassed. Each supply pin must be decoupled with separate bypass capacitors. Additionally, achieving rated performance requires that the backside exposed pad be well grounded.
(3) Typical figures are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and represent most likely parametric norms. Test limits are specified to TI's AOQL (Average Outgoing Quality Level).
(4) Calculation of Full-Scale Error for this device assumes that the actual reference voltage is exactly its nominal value. Full-Scale Error for this device, therefore, is a combination of Full-Scale Error and Reference Voltage Error. See Figure 1. For relationship between Gain Error and Full-Scale Error, see Specification Definitions for Gain Error.

Converter Electrical Characteristics (continued)

The following specifications apply after calibration for $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DR}}=+1.9 \mathrm{~V}_{\mathrm{DC}}$, OutV $=1.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}$ (a.c. coupled) Full Scale Range $=$ differential $870 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$, Differential (a.c. coupled) sinewave input clock, $\mathrm{f}_{\mathrm{CLK}}=1.5 \mathrm{GHz}$ at $0.5 \mathrm{~V}_{\text {P-P }}$ with 50% duty cycle, $\mathrm{V}_{\mathrm{BG}}=$ Floating, Normal Control Mode, Single Data Rate Mode, $\mathrm{R}_{\mathrm{EXT}}=3300 \Omega \pm 0.1 \%$, Analog Signal Source Impedance $=100 \Omega$ Differential. Boldface limits apply for $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$. All other limits $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted. ${ }^{(1)(2)}$

Symbol	Parameter	Conditions	Typical ${ }^{(3)}$	Limits ${ }^{(3)}$	Units (Limits)
3rd Harm	Third Harmonic Distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=373 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \\ & \mathrm{f}_{\mathrm{IN}}=748 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -62 \\ & -65 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
SFDR	Spurious-Free dynamic Range	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=373 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \\ & \mathrm{f}_{\mathrm{IN}}=748 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-0.5 \mathrm{~dB} \end{aligned}$	$\begin{array}{r} 56 \\ 53 \end{array}$	48.5	$\mathrm{dB}(\mathrm{min})$ dB (min)
IMD	Intermodulation Distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{IN} 1}=321 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-7 \mathrm{~dB} \\ & \mathrm{f}_{\mathrm{IN} 2}=326 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{FSR}-7 \mathrm{~dB} \end{aligned}$	-50		dB
	Out of Range Output Code (In addition to OR Output high)	$\left(\mathrm{V}_{\mathbb{N}^{+}}\right)-\left(\mathrm{V}_{\mathbb{N}^{-}}\right)>+$Full Scale		255	
		$\left(\mathrm{V}_{\mathbb{N}^{+}}\right)-\left(\mathrm{V}_{\mathbb{I N}^{-}}\right)<-$Full Scale		0	
ANALOG INPUT AND REFERENCE CHARACTERISTICS					
VIN	Full Scale Analog Differential Input Range	FSR pin 14 Low	650	570	$m \mathrm{~V}_{\text {P-P }}(\mathrm{min})$
				730	$m V_{P-P}(\max)$
		FSR pin 14 High	870	790	$m V_{\text {P-P }}(\mathrm{min})$
				950	$m V_{P-P}(\max)$
$\mathrm{V}_{\text {CMI }}$	Analog Input Common Mode Voltage		$\mathrm{V}_{\text {Смо }}$	$\begin{aligned} & \mathrm{V}_{\text {СMO }}-50 \\ & \mathrm{~V}_{\text {СMO }}+50 \\ & \hline \end{aligned}$	$m V(m i n)$ mV (max)
$\mathrm{CIN}_{\text {IN }}$	Analog Input Capacitance ${ }^{(5)(6)}$	Differential	0.02		pF
		Each input pin to ground	1.6		pF
$\mathrm{R}_{\text {IN }}$	Differential Input Resistance		100	94	$\Omega(\min)$
				106	Ω (max)
ANALOG OUTPUT CHARACTERISTICS					
$\mathrm{V}_{\text {Смо }}$	Common Mode Output Voltage	$\mathrm{I}_{\text {CMO }}= \pm 100 \mu \mathrm{~A}$	1.26	$\begin{aligned} & 0.95 \\ & 1.45 \\ & \hline \end{aligned}$	V (min) $V(\max)$
TC V CmO	Common Mode Output Voltage Temperature Coefficient	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	118		ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CMO_LVL }}$	$\mathrm{V}_{\text {Смо }}$ input threshold to set DC Coupling mode	$\mathrm{V}_{\mathrm{A}}=1.8 \mathrm{~V}$	0.60		V
		$\mathrm{V}_{\mathrm{A}}=2.0 \mathrm{~V}$	0.66		V
$\mathrm{C}_{\text {LOAd }} \mathrm{V}_{\text {CMo }}$	Maximum $\mathrm{V}_{\mathrm{CMO}}$ load Capacitance			80	pF
$V_{B G}$	Bandgap Reference Output Voltage	$\mathrm{I}_{\mathrm{BG}}= \pm 100 \mu \mathrm{~A}$	1.26	$\begin{aligned} & 1.20 \\ & 1.33 \end{aligned}$	$\begin{aligned} & \mathrm{V}(\min) \\ & \mathrm{V}(\max) \end{aligned}$
TC V BG	Bandgap Reference Voltage Temperature Coefficient	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{BG}}= \pm 100 \mu \mathrm{~A} \end{aligned}$	28		ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {LOAD }} \mathrm{V}_{\text {BG }}$	Maximum Bandgap Reference Ioad Capacitance			80	pF

(5) The analog and clock input capacitances are die capacitances only. Additional package capacitances of 0.65 pF differential and 0.95 pF each pin to ground are isolated from the die capacitances by lead and bond wire inductances.
(6) This parameter is specified by design and is not tested in production.

Converter Electrical Characteristics (continued)

The following specifications apply after calibration for $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DR}}=+1.9 \mathrm{~V}_{\mathrm{DC}}$, OutV $=1.9 \mathrm{~V}$, V_{IN} (a.c. coupled) Full Scale Range $=$ differential $870 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$, Differential (a.c. coupled) sinewave input clock, $\mathrm{f}_{\mathrm{CLK}}=1.5 \mathrm{GHz}$ at $0.5 \mathrm{~V}_{\text {P-P }}$ with 50% duty cycle, $\mathrm{V}_{\mathrm{BG}}=$ Floating, Normal Control Mode, Single Data Rate Mode, $\mathrm{R}_{\mathrm{EXT}}=3300 \Omega \pm 0.1 \%$, Analog Signal Source Impedance $=100 \Omega$ Differential. Boldface limits apply for $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$. All other limits $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted. ${ }^{(1)(2)}$

Symbol	Parameter	Conditions	Typical ${ }^{(3)}$	Limits ${ }^{(3)}$	Units (Limits)
TEMPERATURE DIODE CHARACTERISTICS					
$\Delta \mathrm{V}_{\mathrm{BE}}$	Temperature Diode Voltage	$\begin{aligned} & 192 \mu \mathrm{~A} \text { vs. } 12 \mu \mathrm{~A}, \\ & \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{aligned}$	71.23		mV
		$\begin{aligned} & 192 \mu \mathrm{~A} \text { vs. } 12 \mu \mathrm{~A}, \\ & \mathrm{~T}_{J}=85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	85.54		mV
CLOCK INPUT CHARACTERISTICS					
$\mathrm{V}_{\text {ID }}$	Differential Clock Input Level	Sine Wave Clock	0.6	$\begin{aligned} & 0.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {P-P }}(\min) \\ & \mathrm{V}_{\mathrm{P}-\mathrm{P}}(\max) \end{aligned}$
		Square Wave Clock	0.6	$\begin{aligned} & 0.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{P}-\mathrm{P}}(\min) \\ & \mathrm{V}_{\mathrm{P}-\mathrm{P}}(\max) \end{aligned}$
1	Input Current	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{A}}$	± 1		$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{(7)(8)}$	Differential	0.02		pF
		Each input to ground	1.5		pF
DIGITAL CONTROL PIN CHARACTERISTICS					
V_{IH}	Logic High Input Voltage	See ${ }^{(9)}$		$0.85 \times \mathrm{V}_{\mathrm{A}}$	V (min)
$\mathrm{V}_{\text {IL }}$	Logic Low Input Voltage	See ${ }^{(9)}$		$0.15 \times \mathrm{V}_{\text {A }}$	V (max)
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{(8)}$ (10)	Each input to ground	1.2		pF
DIGITAL OUTPUT CHARACTERISTICS					
$\mathrm{V}_{\text {OD }}$	LVDS Differential Output Voltage	Measured differentially, OutV $=\mathrm{V}_{\mathrm{A}}$,		400	$m \mathrm{~V}_{\text {P-P }}(\mathrm{min})$
		$\mathrm{V}_{\mathrm{BG}}=\text { Floating }$		920	$m V_{P-P}(\max)$
		Measured differentially, OutV = GND, $\mathrm{V}_{\mathrm{BG}}=$ Floating (11)	510	280	$m V_{P-P}(\min)$
				720	$m V_{P-P}(\max)$
$\Delta \mathrm{V}_{\text {O DIFF }}$	Change in LVDS Output Swing Between Logic Levels		± 1		mV
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage	$V_{B G}=$ Floating	800		mV
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage	$V_{B G}=V_{A}{ }^{(11)}$	1200		mV
$\Delta \mathrm{V}_{\mathrm{OS}}$	Output Offset Voltage Change Between Logic Levels		± 1		mV
los	Output Short Circuit Current	Output+ \& Output- connected to 0.8 V	± 4		mA
Z_{0}	Differential Output Impedance		100		Ohms
V_{OH}	CaIRun High level output	$\mathrm{I}_{\mathrm{OH}}=-400 \mathrm{uA}{ }^{(9)}$	1.65	1.5	V
V_{OL}	CalRun Low level output	$\mathrm{I}_{\mathrm{OH}}=400 \mathrm{uA}{ }^{(9)}$	0.15	0.3	V

(7) The analog and clock input capacitances are die capacitances only. Additional package capacitances of 0.65 pF differential and 0.95 pF each pin to ground are isolated from the die capacitances by lead and bond wire inductances.
(8) This parameter is specified by design and is not tested in production.
(9) This parameter is specified by design and/or characterization and is not tested in production.
(10) The digital control pin capacitances are die capacitances only. Additional package capacitance of 1.6 pF each pin to ground are isolated from the die capacitances by lead and bond wire inductances.
(11) Tying V_{BG} to the supply rail will increase the output offset voltage (V_{OS}) by 400 mv (typical), as shown in the V_{OS} specification above. Tying $V_{B G}$ to the supply rail will also affect the differential LVDS output voltage $\left(\mathrm{V}_{\mathrm{OD}}\right)$, causing it to increase by 40 mV (typical).

Converter Electrical Characteristics (continued)

The following specifications apply after calibration for $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DR}}=+1.9 \mathrm{~V}_{\mathrm{DC}}$, OutV $=1.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}$ (a.c. coupled) Full Scale Range $=$ differential $870 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$, Differential (a.c. coupled) sinewave input clock, $\mathrm{f}_{\mathrm{CLK}}=1.5 \mathrm{GHz}$ at $0.5 \mathrm{~V}_{\text {P-P }}$ with 50% duty cycle, $\mathrm{V}_{\mathrm{BG}}=$ Floating, Normal Control Mode, Single Data Rate Mode, $\mathrm{R}_{\mathrm{EXT}}=3300 \Omega \pm 0.1 \%$, Analog Signal Source Impedance $=100 \Omega$ Differential. Boldface limits apply for $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$. All other limits $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted. ${ }^{(1)(2)}$

Symbol	Parameter	Conditions	Typical ${ }^{(3)}$	Limits ${ }^{(3)}$	Units (Limits)
POWER SUPPLY CHARACTERISTICS					
I_{A}	Analog Supply Current	$\begin{array}{\|l\|l\|} \hline \text { PD }=\text { Low } \\ \text { PD }=\text { High } \end{array}$	$\begin{gathered} 524 \\ 1.8 \end{gathered}$	600	$\underset{\mathrm{mA}}{\mathrm{~mA}(\max)}$
I_{DR}	Output Driver Supply Current	$\begin{aligned} & \text { PD = Low } \\ & \text { PD = High } \end{aligned}$	$\begin{gathered} 116 \\ 0.012 \end{gathered}$	165	$\underset{m A}{m A}(\max)$
P_{D}	Power Consumption	$\begin{aligned} & \text { PD = Low } \\ & \text { PD = High } \end{aligned}$	$\begin{aligned} & 1.2 \\ & 3.5 \end{aligned}$	1.45	$\underset{\mathrm{mW}}{\mathrm{~W}(\max)}$
PSRR1	D.C. Power Supply Rejection Ratio	Change in Full Scale Error with change in V_{A} from 1.8 V to 2.0 V	30		dB
PSRR2	A.C. Power Supply Rejection Ratio	$248 \mathrm{MHz}, 50 \mathrm{mV} \mathrm{V}_{\text {-P }}$ riding on V_{A}	51		dB

AC ELECTRICAL CHARACTERISTICS

$\mathrm{f}_{\text {CLK1 }}$	Maximum Input Clock Frequency		1.7	1.5	GHz (min)
$\mathrm{f}_{\text {CLK2 }}$	Minimum Input Clock Frequency		200		MHz
	Input Clock Duty Cycle	200 MHz < Input clock frequency \leq $1.5 \mathrm{GHz} \text { (12) }$	50	$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\%$ (min) \% (max)
t_{CL}	Input Clock Low Time	See ${ }^{(13)}$	333	133	ps (min)
t_{CH}	Input Clock High Time	See ${ }^{(13)}$	333	133	ps (min)
	DCLK Duty Cycle	See ${ }^{(13)}$	50	$\begin{aligned} & 45 \\ & 55 \end{aligned}$	$\%$ (min) \% (max)
$t_{R S}$	Reset Setup Time	See ${ }^{(13)}$	150		ps
t_{RH}	Reset Hold Time	See ${ }^{(13)}$	250		ps
$t_{S D}$	Synchronizing Edge to DCLK Output Delay		$t_{\text {OD }}+t_{\text {OSK }}$		
$t_{\text {RPW }}$	Reset Pulse Width	See ${ }^{(13)}$		4	CLK \pm Cycles (min)
$\mathrm{t}_{\text {LHT }}$	Differential Low to High Transition Time	10% to $90 \%, C_{L}=2.5 \mathrm{pF}$	250		ps
$\mathrm{t}_{\mathrm{HLT}}$	Differential High to Low Transition Time	10% to $90 \%, C_{L}=2.5 \mathrm{pF}$	250		ps
$\mathrm{t}_{\text {OSK }}$	DCLK to Data Output Skew	50% of DCLK transition to 50% of Data transition, SDR Mode and DDR Mode, 0° DCLK ${ }^{(13)}$	± 50		ps (max)
$\mathrm{t}_{\text {SU }}$	Data to DCLK Set-Up Time	DDR Mode, 90° DCLK ${ }^{(13)}$	400		ns
t_{H}	DCLK to Data Hold Time	DDR Mode, 90° DCLK ${ }^{(13)}$	560		ns
t_{AD}	Sampling (Aperture) Delay	Input CLK+ Fall to Acquisition of Data	1.3		ns
t_{AJ}	Aperture Jitter		0.4		ps rms
tod	Input Clock to Data Output Delay (in addition to Pipeline Delay)	50\% of Input Clock transition to 50\% of Data transition	3.1		ns

(12) This parameter is specified by design and/or characterization and is not tested in production.
(13) This parameter is specified by design and is not tested in production.

Converter Electrical Characteristics (continued)

The following specifications apply after calibration for $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DR}}=+1.9 \mathrm{~V}_{\mathrm{DC}}$, OutV $=1.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}$ (a.c. coupled) Full Scale Range $=$ differential $870 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$, Differential (a.c. coupled) sinewave input clock, $\mathrm{f}_{\mathrm{CLK}}=1.5 \mathrm{GHz}$ at $0.5 \mathrm{~V}_{\text {P-P }}$ with 50% duty cycle, $\mathrm{V}_{\mathrm{BG}}=$ Floating, Normal Control Mode, Single Data Rate Mode, $\mathrm{R}_{\mathrm{EXT}}=3300 \Omega \pm 0.1 \%$, Analog Signal Source Impedance $=100 \Omega$ Differential. Boldface limits apply for $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$. All other limits $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted. ${ }^{(1)(2)}$

Symbol	Parameter	Conditions	Typical ${ }^{(3)}$	Limits ${ }^{(3)}$	Units (Limits)
	Pipeline Delay (Latency) ${ }^{(14)(15)}$	D Outputs		13	Input CLK \pm Cycles
		Dd Outputs		14	
	Over Range Recovery Time	Differential V_{IN} step from $\pm 1.2 \mathrm{~V}$ to 0 V to get accurate conversion	1		Input CLK \pm Cycle
$\mathrm{t}_{\text {wu }}$	PD low to Rated Accuracy Conversion (Wake-Up Time)		500		ns
$\mathrm{f}_{\text {SCLK }}$	Serial Clock Frequency	See ${ }^{(14)}$	100		MHz
tssu	Data to Serial Clock Setup Time	See ${ }^{(14)}$	2.5		ns (min)
$\mathrm{t}_{\text {SH }}$	Data to Serial Clock Hold Time	See ${ }^{(14)}$	1		ns (min)
	Serial Clock Low Time			4	ns (min)
	Serial Clock High Time			4	ns (min)
$\mathrm{t}_{\text {CAL }}$	Calibration Cycle Time		1.4×10^{5}		CLK \pm Cycles
${ }_{\text {t }}^{\text {cal_ }}$ L	CAL Pin Low Time	See Figure $8{ }^{(14)}$		80	CLK \pm Cycles (min)
$\mathrm{t}_{\text {CAL_H }}$	CAL Pin High Time	See Figure $8{ }^{(14)}$		80	CLK \pm Cycles (min)
$\mathrm{t}_{\text {CalDly }}$	Calibration delay determined by pin 127	$\begin{aligned} & \text { CalDly = Low } \\ & \text { See Self-Calibration, Figure 8, }{ }^{(14)} \end{aligned}$		2^{25}	CLK \pm Cycles (min)
		$\begin{aligned} & \text { CalDly }=\text { High } \\ & \text { See Self-Calibration, Figure 8, }{ }^{(14)} \end{aligned}$		2^{31}	CLK \pm Cycles (max)

(14) This parameter is specified by design and is not tested in production.
(15) The ADC081500 converter has two LVDS output buses, which each clock data out at one half the sample rate. The second bus (D0 through D7) has a pipeline latency that is one Input Clock cycle less than the latency of the first bus (Dd0 through Dd7).

Specification Definitions

APERTURE (SAMPLING) DELAY is that time required after the fall of the clock input for the sampling switch to open. The Sample/Hold circuit effectively stops capturing the input signal and goes into the "hold" mode the aperture delay time (t_{AD}) after the input clock goes low.
APERTURE JITTER (t_{AJ}) is the variation in aperture delay from sample to sample. Aperture jitter shows up as input noise.
Bit Error Rate (B.E.R.) is the probability of error and is defined as the probable number of errors per unit of time divided by the number of bits seen in that amount of time. A B.E.R. of 10^{-18} corresponds to a statistical error in one bit about every four (4) years.
CLOCK DUTY CYCLE is the ratio of the time that the clock wave form is at a logic high to the total time of one clock period.
DIFFERENTIAL NON-LINEARITY (DNL) is the measure of the maximum deviation from the ideal step size of 1 LSB. Measured at sample rate $=1500 \mathrm{MSPS}$ with a 1 MHz input sinewave.
EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE BITS) is another method of specifying Signal-to-Noise and Distortion Ratio, or SINAD. ENOB is defined as (SINAD - 1.76) / 6.02 and says that the converter is equivalent to a perfect ADC of this (ENOB) number of bits.
FULL POWER BANDWIDTH (FPBW) is a measure of the frequency at which the reconstructed output fundamental drops 3 dB below its low frequency value for a full scale input.
GAIN ERROR is the deviation from the ideal slope of the transfer function. It can be calculated from Offset and Full-Scale Errors:

Pos. Gain Error = Offset Error - Pos. Full-Scale Error
Neg. Gain Error =-(Offset Error - Neg. Full-Scale Error)
Gain Error $=$ Neg. Full-Scale Error - Pos. Full-Scale Error $=$ Pos. Gain Error + Neg. Gain Error
INTEGRAL NON-LINEARITY (INL) is a measure of worst case deviation of the ADC transfer function from an ideal straight line drawn through the ADC transfer function. The deviation of any given code from this straight line is measured from the center of that code value step. The best fit method is used.
INTERMODULATION DISTORTION (IMD) is the creation of additional spectral components as a result of two sinusoidal frequencies being applied to the ADC input at the same time. it is defined as the ratio of the power in the second and third order intermodulation products to the power in one of the original frequencies. IMD is usually expressed in dBFS.
LSB (LEAST SIGNIFICANT BIT) is the bit that has the smallest value or weight of all bits. This value is
$V_{F S} / 2^{n}$
where V_{FS} is the differential full-scale amplitude $\mathrm{V}_{\mathbb{I N}}$ as set by the FSR input and " n " is the ADC resolution in bits, which is 8 for the ADC081500.
LVDS DIFFERENTIAL OUTPUT VOLTAGE $\left(\mathrm{V}_{\mathrm{OD}}\right)$ is the absolute value of the difference between the $\mathrm{V}_{\mathrm{D}}+\& \mathrm{~V}_{\mathrm{D}^{-}}$ outputs; each measured with respect to Ground.

LVDS OUTPUT OFFSET VOLTAGE (V_{OS}) is the midpoint between the $\mathrm{D}+$ and D - pins output voltage; i.e., $\left[\left(V_{D^{+}}\right)+\left(V_{D-}\right)\right] / 2$.
MISSING CODES are those output codes that are skipped and will never appear at the ADC outputs. These codes cannot be reached with any input value.
MSB (MOST SIGNIFICANT BIT) is the bit that has the largest value or weight. Its value is one half of full scale.
NEGATIVE FULL-SCALE ERROR (NFSE) is a measure of how far the first code transition is from the ideal $1 / 2$ LSB above a differential $-\mathrm{V}_{\text {IN }} / 2$. For the ADC081500 the reference voltage is assumed to be ideal, so this error is a combination of full-scale error and reference voltage error.
OFFSET ERROR ($\mathrm{V}_{\text {OFF }}$) is a measure of how far the mid-scale point is from the ideal zero voltage differential input.
Offset Error = Actual Input causing average of 8k samples to result in an average code of 127.5.
OUTPUT DELAY (t_{OD}) is the time delay (in addition to Pipeline Delay) after the falling edge of CLK+ before the data update is present at the output pins.
OVER-RANGE RECOVERY TIME is the time required after the differential input voltages goes from $\pm 1.2 \mathrm{~V}$ to 0 V for the converter to recover and make a conversion with its rated accuracy.

PIPELINE DELAY (LATENCY) is the number of input clock cycles between initiation of conversion and when that data is presented to the output driver stage. New data is available at every clock cycle, but the data lags the conversion by the Pipeline Delay plus the tod.

POSITIVE FULL-SCALE ERROR (PFSE) is a measure of how far the last code transition is from the ideal 1-1/2 LSB below a differential $+\mathrm{V}_{\mathbb{I N}}$. For the ADC081500 the reference voltage is assumed to be ideal, so this error is a combination of full-scale error and reference voltage error.

POWER SUPPLY REJECTION RATIO (PSRR) can be one of two specifications. PSRR1 (DC PSRR) is the ratio of the change in full-scale error that results from a power supply voltage change from 1.8 V to 2.0 V . PSRR2 (AC PSRR) is a measure of how well an a.c. signal riding upon the power supply is rejected from the output and is measured with a $248 \mathrm{MHz}, 50 \mathrm{mV}_{\text {P-P }}$ signal riding upon the power supply. It is the ratio of the output amplitude of that signal at the output to its amplitude on the power supply pin. PSRR is expressed in dB.
SIGNAL TO NOISE RATIO (SNR) is the ratio, expressed in dB , of the rms value of the input signal at the output to the rms value of the sum of all other spectral components below one-half the sampling frequency, not including harmonics or d.c.
SIGNAL TO NOISE PLUS DISTORTION (S/(N+D) or SINAD) is the ratio, expressed in dB, of the rms value of the input signal at the output to the rms value of all of the other spectral components below half the input clock frequency, including harmonics but excluding d.c.
SPURIOUS-FREE DYNAMIC RANGE (SFDR) is the difference, expressed in dB , between the rms values of the input signal at the output and the peak spurious signal, where a spurious signal is any signal present in the output spectrum that is not present at the input, excluding d.c.
TOTAL HARMONIC DISTORTION (THD) is the ratio expressed in dB, of the rms total of the first nine harmonic levels at the output to the level of the fundamental at the output. THD is calculated as
$T H D=20 \times \log \sqrt{\frac{A_{f 2}{ }^{2}+\ldots+A_{f 10}{ }^{2}}{A_{f 1}{ }^{2}}}$
where $A_{f 1}$ is the RMS power of the fundamental (output) frequency and $A_{\mathrm{f} 2}$ through $\mathrm{A}_{\mathrm{f} 10}$ are the RMS power of the first 9 harmonic frequencies in the output spectrum.

- Second Harmonic Distortion (2nd Harm) is the difference, expressed in dB, between the RMS power in the input frequency seen at the output and the power in its 2nd harmonic level at the output.
- Third Harmonic Distortion (3rd Harm) is the difference expressed in dB between the RMS power in the input frequency seen at the output and the power in its 3rd harmonic level at the output.

Transfer Characteristic

Figure 1. Input / Output Transfer Characteristic

Timing Diagrams

Figure 2. ADC081500 Timing - SDR Clocking

Figure 3. ADC081500 Timing - DDR Clocking

Figure 4. Serial Interface Timing

Figure 5. Clock Reset Timing in DDR Mode

Figure 6. Clock Reset Timing in SDR Mode with OUTEDGE Low

Figure 7. Clock Reset Timing in SDR Mode with OUTEDGE High

Figure 8. Self Calibration and On-Command Calibration Timing

Typical Performance Characteristics

$V_{A}=V_{D R}=1.9 \mathrm{~V}, \mathrm{~F}_{\mathrm{CLK}}=1500 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

Figure 9.
DNL
CODE

OUTPUT CODE
Figure 11.

Figure 13.

Figure 10.

DNL
 TEMPERATURE

Figure 12.

Figure 14.

Typical Performance Characteristics (continued)

$V_{A}=V_{D R}=1.9 \mathrm{~V}, \mathrm{~F}_{\mathrm{CLK}}=1500 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

Figure 15.

Figure 17.

Figure 19.

Figure 16.
SNR
TEMPERATURE

Figure 18.

Figure 20.

Typical Performance Characteristics (continued)

$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DR}}=1.9 \mathrm{~V}, \mathrm{~F}_{\mathrm{CLK}}=1500 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

Figure 21.

Figure 23.

Figure 25.

Figure 22.
THD
SAMPLE RATE

Figure 24.
SFDR TEMPERATURE

Figure 26.

Typical Performance Characteristics (continued)
$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DR}}=1.9 \mathrm{~V}, \mathrm{~F}_{\mathrm{CLK}}=1500 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

SFDR
SUPPLY VOLTAGE

Figure 27.

Figure 29.

Figure 31.

SFDR
vS.
SAMPLE RATE

Figure 28.

Figure 30.
FULL POWER BANDWIDTH

Figure 32.

FUNCTIONAL DESCRIPTION

The ADC081500 is a versatile A/D Converter with an innovative architecture permitting very high speed operation. The controls available ease the application of the device to circuit solutions. Optimum performance requires adherence to the provisions discussed here and in the Applications Information Section.

While it is generally poor practice to allow an active pin to float, pins 4 and 14 of the ADC081500 are designed to be left floating without jeopardy. In all discussions throughout this data sheet, whenever a function is called by allowing a control pin to float, connecting that pin to a potential of one half the V_{A} supply voltage will have the same effect as allowing it to float.

OVERVIEW

The ADC081500 uses a calibrated folding and interpolating architecture that achieves 7.4 effective bits. The use of folding amplifiers greatly reduces the number of comparators and power consumption. Interpolation reduces the number of front-end amplifiers required, minimizing the load on the input signal and further reducing power requirements. In addition to other things, on-chip calibration reduces the INL bow often seen with folding architectures. The result is an extremely fast, high performance, low power converter.
The analog input signal that is within the converter's input voltage range is digitized to eight bits at speeds of 200 MSPS to 1.7 GSPS, typical. Differential input voltages below negative full-scale will cause the output word to consist of all zeroes. Differential input voltages above positive full-scale will cause the output word to consist of all ones. Either of these conditions at the input will cause the OR (Out of Range) output to be activated. That is, the single OR output indicates the output code is below negative full scale or above positive full scale.
The ADC081500 has a 1:2 demultiplexer that feeds two LVDS output buses. The data on these buses provide an output word rate on each bus at half the ADC sampling rate and must be interleaved by the user to provide output words at the full conversion rate.
The output levels may be selected to be normal or reduced. Using reduced levels saves power but could result in erroneous data capture of some or all of the bits, especially at higher sample rates and in marginally designed systems.

Self-Calibration

A self-calibration is performed upon power-up and can also be invoked by the user upon command. Calibration trims the 100Ω analog input differential termination resistor and minimizes full-scale error, offset error, DNL and INL, resulting in maximizing SNR, THD, SINAD (SNDR) and ENOB. Internal bias currents are also set with the calibration process. All of this is true whether the calibration is performed upon power up or is performed upon command. Running the self calibration is an important part of this chip's functionality and is required in order to obtain adequate performance. In addition to the requirement to be run at power-up, self calibration must be rerun whenever the sense of the FSR pin is changed. For best performance, we recommend that self calibration be run 20 seconds or more after application of power and whenever the operating temperature changes significantly relative to the specific system performance requirements. See On-Command Calibration for more information. Calibration can not be initiated or run while the device is in the power-down mode. See Power Down for information on the interaction between Power Down and Calibration.
In normal operation, calibration is performed just after application of power and whenever a valid calibration command is given, which is holding the CAL pin low for at least $\mathrm{t}_{\mathrm{CAL}}$ clock cycles, then hold it high for at least another $\mathrm{t}_{\text {CALH }}$ clock cycles as defined in the Converter Electrical Characteristics. The time taken by the calibration procedure is specified as $\mathrm{t}_{\text {CaL }}$ in Converter Electrical Characteristics. Holding the CAL pin high upon power up will prevent the calibration process from running until the CAL pin experiences the above-mentioned $\mathrm{t}_{\mathrm{CAL} \text { _ }}$ clock cycles followed by $\mathrm{t}_{\mathrm{CAL}}$ H clock cycles.
CaIDly (pin 127) is used to select one of two delay times after the application of power to the start of calibration. This calibration delay time is depedent on the setting of the CalDly pin and is specified as $\mathrm{t}_{\text {caldy }}$ in the Converter Electrical Characteristics. These delay values allow the power supply to come up and stabilize before calibration takes place. If the PD pin is high upon power-up, the calibration delay counter will be disabled until the PD pin is brought low. Therefore, holding the PD pin high during power up will further delay the start of the power-up calibration cycle. The best setting of the CalDly pin depends upon the power-on settling time of the power supply.

Calibration Operation Notes:

- During the calibration cycle, the OR output may be active as a result of the calibration algorithm. All data on the output pins and the OR output are invalid during the calibration cycle.
- During the power-up calibration and during the on-command calibration, all clocks are halted on chip, including internal clocks and DCLK, while the input termination resistor is trimmed to a value that is equal to $\mathrm{R}_{\mathrm{EXT}} / 33$. This is to reduce noise during the input resistor calibration portion of the calibration cycle.
- This external resistor is located between pin 32 and ground. $\mathrm{R}_{\mathrm{EXT}}$ must be $3300 \Omega \pm 0.1 \%$. With this value, the input termination resistor is trimmed to be 100Ω. Because $\mathrm{R}_{\mathrm{EXT}}$ is also used to set the proper current for the Track and Hold amplifier, for the preamplifiers and for the comparators, other values of $\mathrm{R}_{\text {EXT }}$ should not be used.
- The CalRun output is high whenever the calibration procedure is running. This is true whether the calibration is done at power-up or on-command.

Acquiring the Input

Data is acquired at the falling edge of CLK+ (pin 18) and the digital equivalent of that data is available at the digital outputs 13 input clock cycles later for the D output bus and 14 input clock cycles later for the Dd output bus. There is an additional internal delay called $t_{O D}$ before the data is available at the outputs. See the Timing Diagram. The ADC081500 will convert as long as the input clock signal is present. The fully differential comparator design and the innovative design of the sample-and-hold amplifier, together with self calibration, enables a very flat SINAD/ENOB response beyond 1.5 GHz . The ADC081500 output data signaling is LVDS and the output format is offset binary.

Control Modes

Much of the user control can be accomplished with several control pins that are provided. Examples include initiation of the calibration cycle, power down mode and full scale range setting. However, the ADC081500 also provides an Extended Control mode whereby a serial interface is used to access register-based control of several advanced features. The Extended Control mode is not intended to be enabled and disabled dynamically. Rather, the user is expected to employ either the Normal Control mode or the Extended Control mode at all times. When the device is in the Extended Control mode, pin-based control of several features is replaced with register-based control and those pin-based controls are disabled. These pins are OutV (pin 3), OutEdge/DDR (pin 4), FSR (pin 14) and CalDly (pin 127). See NORMAL/EXTENDED CONTROL MODES for details on the Extended Control mode.

The Analog Inputs

The ADC081500 must be driven with a differential input signal. Operation with a single-ended signal is not recommended. It is important that the inputs either be a.c. coupled to the inputs with the $\mathrm{V}_{\text {Смо }}$ pin grounded, or d.c. coupled with the $\mathrm{V}_{\text {смо }}$ pin left floating. An input common mode voltage equal to the $\mathrm{V}_{\text {Смо }}$ output must be provided when d.c. coupling is used.
The input full-scale range is programmable in the normal mode by setting a level on pin 14 (FSR) as defined in by the specification V_{IN} in the Converter Electrical Characteristics. The full-scale range setting operates equally on both ADCs.
In the Extended Control mode, programming the Input Full-Scale Voltage Adjust register allows the input fullscale range to be adjusted as described in THE ANALOG INPUT.

Clocking

The ADC081500 must be driven with an a.c. coupled, differential clock signal. THE CLOCK INPUTS describes the use of the clock input pins. A differential LVDS output clock is available for use in latching the ADC output data into whatever device is used to receive the data. The ADC081500 offers options for output clocking. These options include a choice of which DCLK edge the output data transitions on, and a choice of Single Data Rate (SDR) or Double Data Rate (DDR) outputs.
The ADC081500 also has the option to use a duty cycle corrected clock receiver as part of the input clock circuit. This feature is enabled by default and provides improved ADC clocking. This circuitry allows the ADC to be clocked with a signal source having a duty cycle ratio of $80 / 20 \%$ (worst case).

OutEdge Setting

To help ease data capture in the SDR mode, the output data may be caused to transition on either the positive or the negative edge of the output data clock (DCLK). This is chosen with the OutEdge input (pin 4). A high on the OutEdge input pin causes the output data to transition on the rising edge of DCLK, while grounding this input causes the output to transition on the falling edge of DCLK. See Output Edge Synchronization.

Double Data Rate

A choice of single data rate (SDR) or double data rate (DDR) output is offered. With single data rate the output clock DCLK frequency is the same as the data rate of the two output buses. With double data rate the DCLK frequency is half the data rate and data is sent to the outputs on both DCLK edges. DDR clocking is enabled in Normal Control mode by allowing pin 4 to float.

The LVDS Outputs

The data outputs, the Out Of Range (OR) and DCLK, are LVDS. Output current sources provide 3 mA of output current to a differential 100 Ohm load when the OutV input (pin 14) is high or 2.2 mA when the OutV input is low. For short LVDS lines and low noise systems, satisfactory performance may be realized with the OutV input low, which results in lower power consumption. If the LVDS lines are long and/or the system in which the ADC081500 is used is noisy, it may be necessary to tie the OutV pin high.
The LVDS data output have a typical common mode voltage of 800 mV when the $V_{B G}$ pin is unconnected and floating. This common mode voltage can be increased to 1.2 V by tying the V_{BG} pin to V_{A} if a higher common mode is required.

NOTE

Tying the V_{BG} pin to V_{A} will also increase the differential LVDS output voltage by up to 40 mV .

Power Down

The ADC081500 is in the active state when the Power Down pin (PD) is low. When the PD pin is high, the device is in the power down mode. In this power down mode the data output pins (positive and negative) are put into a high impedance state and the devices power consumption is reduced to a minimal level. The DCLK+/- and OR +/- are not tri-stated, they are weakly pulled down to ground internally. Therefore when the device is powered down the DCLK +/- and OR +/- should not be terminated to a DC voltage. Also note, that upon return to normal operation after power down mode, the pipeline will contain meaningless information.
If the PD input is brought high while a calibration is running, the device will not go into power down until the calibration sequence is complete. However, if power is applied and PD is already high, the device will not begin the calibration sequence until the PD input goes low. If a manual calibration is requested while the device is powered down, the calibration will not begin at all. That is, the manual calibration input is completely ignored in the power down state.

NORMAL/EXTENDED CONTROL MODES

The ADC081500 may be operated in one of two modes. In the simpler Normal Control mode, the user affects available configuration and control of the device through several control pins. The Extended Control mode provides additional configuration and control options through a serial interface and a set of 3 registers. The two control modes are selected with pin 14 (FSR/ECE: Extended Control Enable). The choice of control modes is required to be a fixed selection and is not intended to be switched dynamically while the device is operational.
Table 1 shows how several of the device features are affected by the control mode chosen.

Table 1. Features and modes

Feature	Normal Control Mode	Extended Control Mode
SDR or DDR Clocking	DDR Clocking selected with pin 4 floating. SDR clocking selected when pin 4 not floating.	Selected with nDE in the Configuration Register (1h; bit-10). When the device is in DDR mode, address 1h, bit-8 must be set to Ob.
DDR Clock Phase	Not Selectable (0 0° Phase Only)	Selected with DCP in the Configuration Register (1h; bit-11).
SDR Data transitions with rising or falling DCLK edge	SDR Data transitions with rising edge of DCLK+ when pin 4 is high and on falling edge when low.	Selected with OE in the Configuration Register (1h; bit-8).
LVDS output level	Normal differential data and DCLK amplitude selected when pin 3 is high and reduced amplitude selected when low.	Selected with the OV in the Configuration Register (1h; bit-9).
Power-On Calibration Delay	Short delay selected when pin 127 is low and longer delay selected when high.	Short delay only.
Full-Scale Range	Normal input full-scale range selected when pin 14 is high and reduced range when low. Selected range applies to both channels.	Up to 512 step adjustments over a nominal range specified in Register Description. Selected using the Input Full-Scale Adjust register (3h; bits-7 thru 15).
Input Offset Adjust	Not possible	512 steps of adjustment using the Input Offset register (2h; bits-7 thru 15) as specified in Register Description.

The default state of the Extended Control Mode is set upon power-on reset (internally performed by the device) and is shown in Table 2.

Table 2. Extended Control Mode Operation (Pin 14 Floating)

Feature	Extended Control Mode Default State
SDR or DDR Clocking	DDR Clocking
DDR Clock Phase	Data changes with DCLK edge (0° phase)
LVDS Output Amplitude	Normal amplitude $(710 \mathrm{mV}$ P-P)
Calibration Delay	Short Delay
Full-Scale Range	700 mV nominal
Input Offset Adjust	No adjustment

THE SERIAL INTERFACE

NOTE

During the initial write using the serial interface, all 3 user registers must be written with desired or default values. Once all registers have been written once, other desired settings can be loaded.

NOTE
The 3-pin serial interface is enabled only when the device is in the Extended Control mode. The pins of this interface are Serial Clock (SCLK), Serial Data (SDATA) and Serial Interface Chip Select ($\overline{\mathrm{SCS}}$) Three write only registers are accessible through this serial interface.

SCS: This signal should be asserted low while accessing a register through the serial interface. Setup and hold times with respect to the SCLK must be observed.
SCLK: Serial data input is accepted with the rising edge of this signal. There is no minimum frequency requirement for SCLK.

SDATA: Each register access requires a specific 32-bit pattern at this input. This pattern consists of a header, register address and register value. The data is shifted in MSB first. Setup and hold times with respect to the SCLK must be observed. See the Timing Diagram.
Each Register access consists of 32 bits, as shown in Figure 4 of the Timing Diagrams. The fixed header pattern is 000000000001 (eleven zeros followed by a 1). The loading sequence is such that a " 0 " is loaded first. These 12 bits form the header. The next 4 bits are the address of the register that is to be written to and the last 16 bits are the data written to the addressed register. The addresses of the various registers are indicated in Table 3.

Refer to the Register Description for information on the data to be written to the registers.
Subsequent register accesses may be performed immediately, starting with the 33rd SCLK. This means that the SCS input does not have to be de-asserted and asserted again between register addresses. It is possible, although not recommended, to keep the SCS input permanently enabled (at a logic low) when using extended control.

NOTE

The Serial Interface should not be used when calibrating the ADC. Doing so will impair the performance of the device until it is re-calibrated correctly. Programming the serial registers will also reduce dynamic performance of the ADC for the duration of the register access time.

Table 3. Register Addresses

4-Bit Address					
Loading Sequence: A3 loaded after Fixed Header Pattern, A0 loaded last					
A3	A2	A1	A0	Hex	Register Addressed
0	0	0	0	Oh	Reserved
0	0	0	1	1 h	Configuration
0	0	1	0	2 h	Input Offset
0	0	1	1	3h	Input Full-Scale Voltage Adjust
0	1	0	0	4h	Reserved
0	1	0	1	5 h	Reserved
0	1	1	0	6h	Reserved
0	1	1	1	7h	Reserved
1	0	0	0	8h	Reserved
1	0	0	1	9h	Reserved
1	0	1	0	Ah	Reserved
1	0	1	1	Bh	Reserved
1	1	0	0	Ch	Reserved
1	1	0	1	Dh	Reserved
1	1	1	0	Eh	Reserved
1	1	1	1	Fh	Reserved

REGISTER DESCRIPTION

Three write-only registers provide several control and configuration options in the Extended Control Mode. These registers have no effect when the device is in the Normal Control Mode. Each register description below also shows the Power-On Reset (POR) state of each control bit.

Table 4. Configuration Register

Addr: 1h (W only (0xB2FF)	
D15	D14	D13	D12	D11	D10	D9	D8
1	0	1	DCS	DCP	nDE	OV	OE
D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	1	1	1	1	1

Bit 15	Must be set to 1b
Bit 14	Must be set to 0b
Bit 13	Must be set to 1b
Bit 12	DCS: Duty Cycle Stabilizer. When this bit is set to 1 b , a duty cycle stabilization circuit is applied to the clock input. When this bit is set to 0 b the stabilization circuit is disabled.
	POR State: 1b
Bit 11	DCP: DDR Clock Phase. This bit only has an effect in the DDR mode. When this bit is set to 0b, the DCLK edges are time-aligned with the data bus edges (" 0° Phase"). When this bit is set to a 1 b , the DCLK edges are placed in the middle of the data bit-cells (" 90° Phase").
	POR State: 0b
Bit 10	nDE: DDR Enable. When this bit is set to 0b, data bus clocking follows the DDR (Double Data Rate) mode whereby a data word is output with each rising and falling edge of DCLK. When this bit is set to a 1b, data bus clocking follows the SDR (single data rate) mode whereby each data word is output with either the rising or falling edge of DCLK, as determined by the OutEdge bit.
	POR State: 0b
Bit 9	OV: Output Voltage. This bit determines the LVDS outputs' voltage amplitude and has the same function as the OutV pin that is used in the normal control mode. When this bit is set to 1 b , the standard output amplitude of $710 \mathrm{mV}_{\text {P-P }}$ is used. When this bit is set to 0 b , the reduced output amplitude of $510 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}$ is used.
	POR State: 1b
Bit 8	OE: Output Edge. This bit selects the DCLK edge with which the data words transition in the SDR mode and has the same effect as the OutEdge pin in the normal control mode. When this bit is 1 , the data outputs change with the rising edge of DCLK + . When this bit is 0 , the data output change with the falling edge of DCLK + .
	POR State: 0b
Bits 7:0	Must be set to 1b.

Table 5. Input Offset

Addr: 2h (001						W only (0x007F)	
D15	D14	D13	D12	D11	D10	D9	D8
(MSB)							(LSB)
D7	D6	D5	D4	D3	D2	D1	D0
Sign	1	1	1	1	1	1	1

Bits $15: 8$	Input Offset Value. The input offset of the ADC is adjusted linearly and monotonically by the value in this field. 00h provides a nominal zero offset, while FFh provides a nominal 45 mV of offset. Thus, each code step provides 0.176 mV of offset.
	POR State: 00000000 b
	Sign bit. 0 b gives positive offset, 1 b gives negative offset.
0 b	

Bit 6:0	Must be set to 1 b

Table 6. Input Full-Scale Voltage Adjust

| Addr: 3h (0011b) W only (0x807F) |
| :--- | :--- |

D15	D14	D13	D12	D11	D10	D9	D8
(MSB)	Adjust Value						

D7	D6	D5	D4	D3	D2	D1	D0
(LSB)	1	1	1	1	1	1	1

Bit 15:7	Input Full Scale Voltage Adjust Value. The input full-scale voltage or gain of the ADC is adjusted linearly and monotonically with a 9 bit data value. The adjustment range is $\pm 20 \%$ of the nominal $700 \mathrm{mV} \mathrm{V}_{\text {P-p }}$ differential value.	
	000000000	$560 \mathrm{mV} \mathrm{P}_{\text {P-P }}$
	100000000 Default Value	$700 \mathrm{mV} \mathrm{P}_{\text {-P }}$
	111111111	$840 \mathrm{mV} \mathrm{P}_{\text {-P }}$
	For best performance, it is recommended that the value in this field be limited to the range of 011000000 b to 11100000 0b. i.e., limit the amount of adjustment to $\pm 15 \%$. The remaining $\pm 5 \%$ headroom allows for the ADC's own full scale variation. A gain adjustment does not require ADC re-calibration.	
	POR State: 10000000 0b (no adjustment)	
Bits 6:0	Must be set to 1b	

Note Regarding Extended Mode Offset Correction

When using the Input Offset Adjust register, the following information should be noted.
For offset values of +00000000 and -00000000 , the actual offset is not the same. By changing only the sign bit in this case, an offset step in the digital output code of about 1/10th of an LSB is experienced. This is shown more clearly in the Figure below.

Figure 33. Extended Mode Offset Behavior

MULTIPLE ADC SYNCHRONIZATION

The ADC081500 has the capability to precisely reset its sampling clock input to DCLK output relationship as determined by the user-supplied DCLK_RST pulse. This allows multiple ADCs in a system to have their DCLK (and data) outputs transition at the same time with respect to the shared CLK input that all the ADCs use for sampling.
The DCLK_RST signal must observe some timing requirements that are shown in Figure 5, Figure 6 and Figure 7 of the Timing Diagrams. The DCLK_RST pulse must be of a minimum width and its deassertion edge must observe setup and hold times with respect to the CLK input rising edge. These timing specifications are listed as $\mathrm{t}_{\mathrm{RH}}, \mathrm{t}_{\mathrm{RS}}$, and $\mathrm{t}_{\text {RPw }}$ in the Converter Electrical Characteristics.
The DCLK_RST signal can be asserted asynchronous to the input clock. If DCLK_RST is asserted, the DCLK output is held in a designated state. The state in which DCLK is held during the reset period is determined by the mode of operation (SDR/DDR) and the setting of the Output Edge configuration pin or bit. (Refer to Figure 5, Figure 6 and Figure 7 for the DCLK reset state conditions). Therefore, depending upon when the DCLK_RST signal is asserted, there may be a narrow pulse on the DCLK line during this reset event. When the DCLK_RST signal is de-asserted in synchronization with the CLK rising edge, the next CLK falling edge synchronizes the DCLK output with those of other ADC081500s in the system. The DCLK output is enabled again after a constant delay (relative to the input clock frequency) which is equal to the CLK input to DCLK output delay (tsD). The device always exhibits this delay characteristic in normal operation.
The DCLK_RST pin should NOT be brought high while the calibration process is running (while CalRun is high). Doing so could cause a digital glitch in the digital circuitry, resulting in corruption and invalidation of the calibration.

APPLICATIONS INFORMATION

THE REFERENCE VOLTAGE

The voltage reference for the ADC081500 is derived from a 1.254 V bandgap reference which is made available at pin $31, V_{B G}$ for user convenience. This output has an output current capability of $\pm 100 \mu \mathrm{~A}$ and should be buffered if more current than this is required.
The internal bandgap-derived reference voltage has a nominal value of $\mathrm{V}_{\mathbb{I}}$, as determined by the FSR pin and described in The Analog Inputs.
There is no provision for the use of an external reference voltage, but the full-scale input voltage can be adjusted through a Configuration Register in the Extended Control mode, as explained in NORMAL/EXTENDED CONTROL MODES.

Differential input signals up to the chosen full-scale level will be digitized to 8 bits. Signal excursions beyond the full-scale range will be clipped at the output. These large signal excursions will also activate the OR output for the time that the signal is out of range. See Out Of Range (OR) Indication.
One extra feature of the V_{BG} pin is that it can be used to raise the common mode voltage level of the LVDS outputs. The output offset voltage (V_{OS}) is typically 800 mV when the V_{BG} pin is used as an output or left unconnected. To raise the LVDS offset voltage to a typical value of 1200 mV the V_{BG} pin can be connected directly to the supply rails.

THE ANALOG INPUT

The analog input is a differential one to which the signal source may be a.c. coupled or d.c. coupled. In the normal mode, the full-scale input range is selected using the FSR pin as specified in the Converter Electrical Characteristics. In the Extended Control mode, the full-scale input range is selected by programming the FullScale Voltage Adjust register through the Serial Interface. For best performance when adjusting the input fullscale range in the Extended Control, refer to Table 6 for guidelines on limiting the amount of adjustment.
Table 7 gives the input to output relationship with the FSR pin high when the normal (non-extended) mode is used. With the FSR pin grounded, the millivolt values in Table 7 are reduced to 75% of the values indicated. In the Enhanced Control Mode, these values will be determined by the full scale range and offset settings in the Control Registers.

Table 7. DIFFERENTIAL INPUT TO OUTPUT RELATIONSHIP (Normal Control Mode, FSR High)

$\mathrm{V}_{\mathrm{IN}^{+}}$	$\mathrm{V}_{\mathrm{IN}^{-}}$	Output Code
$\mathrm{V}_{\mathrm{CM}}-217.5 \mathrm{mV}$	$\mathrm{V}_{\mathrm{CM}}+217.5 \mathrm{mV}$	00000000
$\mathrm{~V}_{\mathrm{CM}}-109 \mathrm{mV}$	$\mathrm{V}_{\mathrm{CM}}+109 \mathrm{mV}$	01000000
$\mathrm{~V}_{\mathrm{CM}}$	V_{CM}	$01111111 /$
$\mathrm{V}_{\mathrm{CM}}+109 \mathrm{mV}$	$\mathrm{V}_{\mathrm{CM}}-109 \mathrm{mV}$	10000000
$\mathrm{~V}_{\mathrm{CM}}+217.5 \mathrm{mV}$	$\mathrm{V}_{\mathrm{CM}}-217.5 \mathrm{mV}$	11000000

The buffered analog inputs simplify the task of driving these inputs and the RC pole that is generally used at sampling ADC inputs is not required. If it is desired to use an amplifier circuit before the ADC, use care in choosing an amplifier with adequate noise and distortion performance and adequate gain at the frequencies used for the application.
Note that a precise d.c. common mode voltage must be present at the ADC inputs. This common mode voltage, $\mathrm{V}_{\text {СмО }}$, is provided on-chip when a.c. input coupling is used and the input signal is a.c. coupled to the ADC.
When the inputs are a.c. coupled, the $\mathrm{V}_{\text {Смо }}$ output must be grounded, as shown in Figure 34. This causes the on-chip $\mathrm{V}_{\text {СMO }}$ voltage to be connected to the inputs through on-chip 50k-Ohm resistors.

Figure 34. Differential Input Drive
When the d.c. coupled mode is used, a common mode voltage must be provided at the differential inputs that should track the $V_{\text {CMO }}$ output voltage. The $V_{\text {CMO }}$ output potential will change with temperature and the common mode output of the driving device should track this change. Full-scale distortion performance falls off rapidly as the input common mode voltage deviates from $\mathrm{V}_{\text {смо. }}$. This is a direct result of using a very low supply voltage to minimize power. Keep the input common voltage within 50 mV of $\mathrm{V}_{\mathrm{cmo}}$. Performance is as good in the d.c. coupled mode as in the a.c. coupled mode, provided the input common mode voltage at both analog inputs remain within 50 mV of $\mathrm{V}_{\text {Смо }}$.

Handling Single-Ended Input Signals

There is no provision for the ADC081500 to adequately process single-ended input signals. The best way to handle single-ended signals is to convert them to differential signals before presenting them to the ADC.

A.C. Coupled Input

The easiest way to accomplish single-ended a.c. input to differential a.c. signal is by using an appropriate balun, as shown in Figure 35.

Figure 35. Single-Ended To Differential Signal Conversion Using a Balun
Figure 35 is a generic depiction of a single-ended to differential signal conversion using a balun. The circuitry specific to the balun will depend on the type of balun selected and the overall board layout. It is recommended that the system designer contact the manufacturer of the balun they have selected to aid in designing the best performing single-ended to differential conversion circuit using that particular balun.
When selecting a balun, it is important to understand the input architecture of the ADC. There are specific balun parameters of which the system designer should be mindful. They should match the impedance of their analog source to the ADC081500's on-chip 100 differential input termination resistor. The range of this termination resistor is described in the electrical table as the specification $\mathrm{R}_{\mathbb{N}}$.
Also, as a result of the ADC architecture, the phase and amplitude balance are important. The lowest possible phase and amplitude imbalance is desired when selecting a balun. The phase imbalance should be no more than $\pm 2.5^{\circ}$ and the amplitude imbalance should be limited to less than 1 dB at the desired input frequency range. Finally, when selecting a balun, the VSWR (Voltage Standing Wave Ratio), bandwidth and insertion loss of the balun should also be considered. The VSWR aids in determining the overall transmission line termination capability of the balun when interfacing to the ADC input. The insertion loss should be considered so that the signal at the balun output is within the specified input range of the ADC as described in the Converter Electrical Characteristics as the specification $\mathrm{V}_{\mathbb{I}}$.

D.C. Coupled Input

When d.c. coupling to the ADC081500 analog inputs is required, single-ended to differential conversion may be easily accomplished with the LMH6555. An example of this type of circuit is shown in Figure 36. In such applications, the LMH6555 performs the task of single-ended to differential conversion while delivering low distortion and noise, as well as output balance, that supports the operation of the ADC081500. Connecting the ADC081500 $\mathrm{V}_{\text {Смо }}$ pin to the $\mathrm{V}_{\text {CM_REF }}$ pin of the LMH6555, through the appropriate buffer, will ensure that the common mode input voltage is as needed for optimum performance of the ADC081500. The LMV321 was chosen to buffer $\mathrm{V}_{\text {смо }}$ for its low voltage operation and reasonable offset voltage.
Be sure that the current drawn from the $\mathrm{V}_{\mathrm{CmO}}$ output does not exceed $100 \mu \mathrm{~A}$.

Figure 36. Example of Servoing the Analog Input with $\mathrm{V}_{\mathrm{CMO}}$
In Table 8, $\mathrm{R}_{\mathrm{ADJ}}$ and $\mathrm{R}_{\mathrm{ADJ}++}$ are used to adjust the differential offset that can be measured at the ADC inputs $\mathrm{V}_{\mathrm{IN}_{+} /}$/ $\mathrm{V}_{\mathrm{IN} \text {. }}$. An unadjusted positive offset with reference to $\mathrm{V}_{\mathbb{I N} \text {-greater than }|15 \mathrm{mV}| \text { should be reduced with a resistor in }}$ the $R_{\text {ADJ.position. Likewise, an }}$ unadjusted negative offset with reference to $\mathrm{V}_{\mathbb{I N} \text {-greater }}$ than $|15 \mathrm{mV}|$ should be reduced with a resistor in the $R_{A D J_{+}}$position. Table 8 gives suggested $R_{A D J}$ and $R_{A D J+}$ values for various unadjusted differential offsets to bring the $\mathrm{V}_{\mathbb{I N}_{+}} / \mathrm{V}_{\mathbb{I}-}$ offset back to within $|15 \mathrm{mV}|$.

Table 8. D.C. Coupled Offset Adjustment

Unadjusted Offset Reading	Resistor Value
0 mV to 10 mV	no resistor needed
11 mV to 30 mV	$20.0 \mathrm{k} \Omega$
31 mV to 50 mV	$10.0 \mathrm{k} \Omega$
51 mV to 70 mV	$6.81 \mathrm{k} \Omega$
71 mV to 90 mV	$4.75 \mathrm{k} \Omega$
91 mV to 110 mV	$3.92 \mathrm{k} \Omega$

Out Of Range (OR) Indication

When the conversion result is clipped the Out of Range output is activated such that OR+ goes high and ORgoes low. This output is active as long as accurate data on the output bus would be outside the range of 00h to FFh.

Full-Scale Input Range

As with all A/D Converters, the input range is determined by the value of the ADC's reference voltage. The reference voltage of the ADC081500 is derived from an internal band-gap reference. The FSR pin controls the effective reference voltage of the ADC081500 such that the differential full-scale input range at the analog inputs is a normal amplitude with the FSR pin high, or a reduced amplitude with FSR pin low as defined by the specification $\mathrm{V}_{\mathbb{I N}}$ in the Converter Electrical Characteristics. Best SNR is obtained with FSR high, but better distortion and SFDR are obtained with the FSR pin low.

THE CLOCK INPUTS

The ADC081500 has differential LVDS clock inputs, CLK+ and CLK-, which must be driven with an a.c. coupled, differential clock signal. Although the ADC081500 is tested and its performance is specified with a differential 1.5 GHz clock, it typically will function well with input clock frequencies indicated in the Converter Electrical Characteristics. The clock inputs are internally terminated and biased. The input clock signal must be capacitively coupled to the clock pins, as indicated in Figure 37.
Operation up to the sample rates indicated in the Converter Electrical Characteristics is typically possible if the maximum ambient temperatures indicated are not exceeded. Operating at higher sample rates than indicated for the given ambient temperature may result in reduced device reliability and product lifetime. This is because of the higher power consumption and die temperatures at high sample rates. Important also for reliability is proper thermal management. See Thermal Management.

Figure 37. Differential (LVDS) Input Clock Connection
The differential Clock line pair should have a characteristic impedance of 100Ω and be terminated at the clock source in that (100) characteristic impedance. The clock line should be as short and as direct as possible. The ADC081500 clock input is internally terminated with an untrimmed 100Ω resistor.
Insufficient clock levels will result in poor dynamic performance. Excessively high clock levels could cause a change in the analog input offset voltage. To avoid these problems, keep the clock level within the range specified as V_{ID} in the Converter Electrical Characteristics.

The low and high times of the input clock signal can affect the performance of any A/D Converter. The ADC081500 features a duty cycle clock correction circuit which can maintain performance over temperature. The ADC will meet its performance specification if the input clock high and low times are maintained within the duty cycle range as specified in the Converter Electrical Characteristics.
High speed, high performance ADCs such as the ADC081500 require a very stable input clock signal with minimum phase noise or jitter. ADC jitter requirements are defined by the ADC resolution (number of bits), maximum ADC input frequency and the input signal amplitude relative to the ADC input full scale range. The maximum jitter (the sum of the jitter from all sources) allowed to prevent a jitter-induced reduction in SNR is found to be

$$
\begin{equation*}
\mathrm{t}_{\mathrm{JMAX})}=\left(\mathrm{V}_{\mathbb{N F S R}} / \mathrm{V}_{\mathbb{I N}(P \cdot-\mathrm{P}))}\right) \times\left(1 /\left(2^{(N+1)} \times \pi \times \mathrm{f}_{\mathbb{N}}\right)\right) \tag{1}
\end{equation*}
$$

where $\mathrm{t}_{\mathrm{JMAX})}$ is the rms total of all jitter sources in seconds, $\mathrm{V}_{\mathrm{IN}_{(P-P)}}$ is the peak-to-peak analog input signal, $\mathrm{V}_{\text {INFSR }}$ is the full-scale range of the ADC, " n " is the ADC resolution in bits and $f_{i N}$ is the maximum input frequency, in Hertz, to the ADC analog input.
Note that the maximum jitter described above is the arithmetic sum of the jitter from all sources, including that in the ADC input clock, that added by the system to the ADC input clock and input signals and that added by the ADC itself. Since the effective jitter added by the ADC is beyond user control, the best the user can do is to keep the sum of the externally added input clock jitter and the jitter added by the analog circuitry to the analog signal to a minimum.
Input clock amplitudes above those specified in the Converter Electrical Characteristics may result in increased input offset voltage. This would cause the converter to produce an output code other than the expected 127/128 when both input pins are at the same potential.

CONTROL PINS

Six control pins (without the use of the serial interface) provide a wide range of possibilities in the operation of the ADC081500 and facilitate its use. These control pins provide Full-Scale Input Range setting, Calibration, Calibration Delay, Output Edge Synchronization choice, LVDS Output Level choice and a Power Down feature.

Full-Scale Input Range Setting

The input full-scale range can be selected with the FSR control input (pin 14) in the normal mode of operation. The is specified as $\mathrm{V}_{\mathbb{I}}$ in the Converter Electrical Characteristics. In the extended control mode, the input fullscale range may be programmed using the Full-Scale Adjust Voltage register. See THE ANALOG INPUT for more information.

Self Calibration

The ADC081500 self-calibration must be run to achieve specified performance. The calibration procedure is run upon power-up and can be run any time on command. The calibration procedure is exactly the same whether there is an input clock present upon power up or if the clock begins some time after application of power. The CalRun output indicator is high while a calibration is in progress. Note that DCLK outputs are not active during a calibration cycle, therefore it is not recommended as a system clock.

Power-On Calibration

Power-on calibration begins after a time delay following the application of power. This time delay is determined by the setting of CalDly, as described in the Calibration Delay Section, below.
The calibration process will be not be performed if the CAL pin is high at power up. In this case, the calibration cycle will not begin until the on-command calibration conditions are met. The ADC081500 will function with the CAL pin held high at power up, but no calibration will be done and performance will be impaired. A manual calibration, however, may be performed after powering up with the CAL pin high. See On-Command Calibration.
The internal power-on calibration circuitry comes up in an unknown logic state. If the input clock is not running at power up and the power on calibration circuitry is active, it will hold the analog circuitry in power down and the power consumption will typically be less than 200 mW . The power consumption will be normal after the clock starts.

On-Command Calibration

To initiate an on-command calibration, bring the CAL pin high for a minimum of $\mathrm{t}_{\mathrm{CAL}}$ H input clock cycles after it has been low for a minimum of $\mathrm{t}_{\text {CAL }}$ input clock cycles. Holding the CAL pin high upon power up will prevent execution of power-on calibration until the CAL pin is low for a minimum of $\mathrm{t}_{\mathrm{CAL}}$ input clock cycles, then brought high for a minimum of another $t_{\text {CAL_H }}$ input clock cycles. The calibration cycle will begin $t_{\text {CAL_H }}$ input clock cycles after the CAL pin is thus brought high. The CalRun signal should be monitored to determine when the calibration cycle has completed.
The minimum $\mathrm{t}_{\mathrm{CAL}}{ }_{\mathrm{H}}$ and $\mathrm{t}_{\text {CAL_L }}$ input clock cycle sequences are required to ensure that random noise does not cause a calibration to begin when it is not desired. A self calibration should be performed 20 seconds or more after power up and repeated when the operating temperature changes significantly according to the particular system performance requirements. ENOB drops slightly as junction temperature increases and executing a new self calibration cycle will essentially eliminate the change.
During a Power-On calibration cycle, both the ADC and the input termination resistor are calibrated. As ENOB changes slightly with junction temperature, an On-Command calibration can be executed to bring the performance of the ADC in line.

Calibration Delay

The CalDly input (pin 127) is used to select one of two delay times after the application of power to the start of calibration, as described in Self-Calibration. The calibration delay values allow the power supply to come up and stabilize before calibration takes place. With no delay or insufficient delay, calibration would begin before the power supply is stabilized at its operating value and result in non-optimal calibration coefficients. If the PD pin is high upon power-up, the calibration delay counter will be disabled until the PD pin is brought low. Therefore, holding the PD pin high during power up will further delay the start of the power-up calibration cycle. The best setting of the CalDly pin depends upon the power-on settling time of the power supply.
Note that the calibration delay selection is not possible in the Extended Control mode and the short delay time is used.

Output Edge Synchronization

DCLK signals are available to help latch the converter output data into external circuitry. The output data can be synchronized with either edge of these DCLK signals. That is, the output data transition can be set to occur with either the rising edge or the falling edge of the DCLK signal, so that either edge of that DCLK signal can be used to latch the output data into the receiving circuit.
When OutEdge (pin 4) is high, the output data is synchronized with (changes with) the rising edge of the DCLK+ (pin 82). When OutEdge is low, the output data is synchronized with the falling edge of DCLK+.
At the very high speeds of which the ADC081500 is capable, slight differences in the lengths of the DCLK and data lines can mean the difference between successful and erroneous data capture. The OutEdge pin is used to capture data on the DCLK edge that best suits the application circuit and layout.

LVDS Output Level Control

The output level can be set to one of two levels with OutV (pin3). The strength of the output drivers is greater with OutV high. With OutV low there is less power consumption in the output drivers, but the lower output level means decreased noise immunity.
For short LVDS lines and low noise systems, satisfactory performance may be realized with the OutV input low. If the LVDS lines are long and/or the system in which the ADC081500 is used is noisy, it may be necessary to tie the OutV pin high.

Power Down Feature

The Power Down pin (PD) suspends device operation and puts the ADC081500 into a minimum power dissipation state. See Power Down for details on the power down feature.
The digital data (+/-) output pins are put into a high impedance state when the PD pin is high. Upon return to normal operation, the pipeline will contain meaningless information and must be flushed.

If the PD input is brought high while a calibration is running, the device will not go into power down until the calibration sequence is complete. However, if power is applied and PD is already high, the device will not begin the calibration sequence until the PD input goes low. If a manual calibration is requested while the device is powered down, the calibration will not begin at all. That is, the manual calibration input is completely ignored in the power down state.

THE DIGITAL OUTPUTS

The ADC081500 demultiplexes the converter output data into two LVDS output buses. The results of successive conversions started on the odd falling edges of the CLK+ pin are available on one of the two LVDS buses, while the results of conversions started on the even falling edges of the CLK+ pin are available on the other LVDS bus. This means that, the word rate at each LVDS bus is $1 / 2$ the ADC081500 input clock rate and the two buses must be multiplexed to obtain the entire 1.5 GSPS conversion result.

Since the minimum recommended input clock rate for this device is 200 MHz , the effective data rate can be reduced to as low as 100 MSPS by using the results available on just one of the output buses with a 200 MHz input clock, decimating the 200 MSPS data by two.
There is one LVDS output clock pair (DCLK+/-) available for use to latch the LVDS outputs on all buses. Whether the data is sent at the rising or falling edge of DCLK is determined by the sense of the OutEdge pin, as described in Output Edge Synchronization.
DDR (Double Data Rate) clocking can also be used. In this mode a word of data is presented with each edge of DCLK, reducing the DCLK frequency to $1 / 4$ the input clock frequency. See the Timing Diagram section for details.

The OutV pin is used to set the LVDS differential output levels. See LVDS Output Level Control.
 produce an output code of all ones, a full-scale input level with $\mathrm{V}_{\mathbb{N}^{-}}$positive with respect to $\mathrm{V}_{\mathbb{N}}+$ will produce an output code of all zeros and when $\mathrm{V}_{\mathbb{N}^{+}}$and $\mathrm{V}_{\mathbb{N}^{-}}$are equal, the output code will vary between codes 127 and 128.

POWER CONSIDERATIONS

A/D converters draw sufficient transient current to corrupt their own power supplies if not adequately bypassed. A $33 \mu \mathrm{~F}$ capacitor should be placed within an inch (2.5 cm) of the A/D converter power pins. A $0.1 \mu \mathrm{~F}$ capacitor should be placed as close as possible to each V_{A} pin, preferably within one-half centimeter. Leadless chip capacitors are preferred because they have low lead inductance.
The V_{A} and V_{DR} supply pins should be isolated from each other to prevent any digital noise from being coupled into the analog portions of the ADC. A ferrite choke, such as the JW Miller FB20009-3B, is recommended between these supply lines when a common source is used for them.
As is the case with all high speed converters, the ADC081500 should be assumed to have little power supply noise rejection. Any power supply used for digital circuitry in a system where a lot of digital power is being consumed should not be used to supply power to the ADC081500. The ADC supplies should be the same supply used for other analog circuitry, if not a dedicated supply.

Supply Voltage

The ADC081500 is specified to operate with a supply voltage of $1.9 \mathrm{~V} \pm 0.1 \mathrm{~V}$. It is very important to note that, while this device will function with slightly higher supply voltages, these higher supply voltages may reduce product lifetime.

No pin should ever have a voltage on it that is in excess of the supply voltage or below ground by more than 150 mV , not even on a transient basis. This can be a problem upon application of power and power shut-down. Be sure that the supplies to circuits driving any of the input pins, analog or digital, do not come up any faster than does the voltage at the ADC081500 power pins.

The Absolute Maximum Ratings should be strictly observed, even during power up and power down. A power supply that produces a voltage spike at turn-on and/or turn-off of power can destroy the ADC081500. The circuit of Figure 38 will provide supply overshoot protection.

Many linear regulators will produce output spiking at power-on unless there is a minimum load provided. Active devices draw very little current until their supply voltages reach a few hundred millivolts. The result can be a turnon spike that can destroy the ADC081500, unless a minimum load is provided for the supply. The 100Ω resistor at the regulator output provides a minimum output current during power-up to ensure there is no turn-on spiking.
In the circuit of Figure 38, an LM317 linear regulator is satisfactory if its input supply voltage is 4 V to 5 V . If a 3.3V supply is used, an LM1086 linear regulator is recommended.

Figure 38. Non-Spiking Power Supply
The output drivers should have a supply voltage, V_{DR}, that is within the range specified in the Operating Ratings table. This voltage should not exceed the V_{A} supply voltage.
If the power is applied to the device without an input clock signal present, the current drawn by the device might be below 200 mA . This is because the ADC081500 gets reset through clocked logic and its initial state is unknown. If the reset logic comes up in the "on" state, it will cause most of the analog circuitry to be powered down, resulting in less than 100 mA of current draw. This current is greater than the power down current because not all of the ADC is powered down. The device current will be normal after the input clock is established.

Thermal Management

The ADC081500 is capable of impressive speeds and performance at very low power levels for its speed. However, the power consumption is still high enough to require attention to thermal management. For reliability reasons, the die temperature should be kept to a maximum of $130^{\circ} \mathrm{C}$. That is, T_{A} (ambient temperature) plus ADC power consumption times θ_{JA} (junction to ambient thermal resistance) should not exceed $130^{\circ} \mathrm{C}$. This is not a problem if the ambient temperature is kept to a maximum of $+85^{\circ} \mathrm{C}$ as specified in the Operating Ratings section.
As a convenience to the user, the ADC081500 incorporates a thermal diode to aid in temperature measurement. However, this diode has not been characterized and TI has no information to provide regarding its characteristics. Hence, no information is available as to the temperature accuracy attainable when using this diode.

Please note that the following are general recommendations for mounting exposed pad devices onto a PCB. This should be considered the starting point in PCB and assembly process development. It is recommended that the process be developed based upon past experience in package mounting.
The package of the ADC081500 has an exposed pad on its back that provides the primary heat removal path as well as excellent electrical grounding to the printed circuit board. The land pattern design for lead attachment to the PCB should be the same as for a conventional HLQFP, but the exposed pad must be attached to the board to remove the maximum amount of heat from the package, as well as to ensure best product parametric performance.
To maximize the removal of heat from the package, a thermal land pattern must be incorporated on the PC board within the footprint of the package. The exposed pad of the device must be soldered down to ensure adequate heat conduction out of the package. The land pattern for this exposed pad should be at least as large as the $5 \times 5 \mathrm{~mm}$ of the exposed pad of the package and be located such that the exposed pad of the device is entirely over that thermal land pattern. This thermal land pattern should be electrically connected to ground. A clearance of at least 0.5 mm should separate this land pattern from the mounting pads for the package pins.

Figure 39. Recommended Package Land Pattern
Since a large aperture opening may result in poor release, the aperture opening should be subdivided into an array of smaller openings, similar to the land pattern of Figure 39.
To minimize junction temperature, it is recommended that a simple heat sink be built into the PCB. This is done by including a copper area of about 2 square inches (6.5 square cm) on the opposite side of the PCB. This copper area may be plated or solder coated to prevent corrosion, but should not have a conformal coating, which could provide some thermal insulation. Thermal vias should be used to connect these top and bottom copper areas. These thermal vias act as "heat pipes" to carry the thermal energy from the device side of the board to the opposite side of the board where it can be more effectively dissipated. The use of 9 to 16 thermal vias is recommended.
The thermal vias should be placed on a 1.2 mm grid spacing and have a diameter of 0.30 to 0.33 mm . These vias should be barrel plated to avoid solder wicking into the vias during the soldering process as this wicking could cause voids in the solder between the package exposed pad and the thermal land on the PCB. Such voids could increase the thermal resistance between the device and the thermal land on the board, which would cause the device to run hotter.
If it is desired to monitor die temperature, a temperature sensor may be mounted on the heat sink area of the board near the thermal vias. Allow for a thermal gradient between the temperature sensor and the ADC081500 die of $\theta_{\text {J-PAD }}$ times typical power consumption $=2.8 \times 1.2=3.4^{\circ} \mathrm{C}$. Allowing for a $5^{\circ} \mathrm{C}$ temperature drop (including an extra $1.6^{\circ} \mathrm{C}$ margin) from the die to the temperature sensor, then, would mean that maintaining a maximum pad temperature reading of $125^{\circ} \mathrm{C}$ will ensure that the die temperature does not exceed $130^{\circ} \mathrm{C}$, assuming that the exposed pad of the ADC081500 is properly soldered down and the thermal vias are adequate. (The inaccuracy of the temperature sensor is in addition to the above calculation).

LAYOUT AND GROUNDING

Proper grounding and proper routing of all signals are essential to ensure accurate conversion. A single ground plane should be used, instead of splitting the ground plane into analog and digital areas.
Since digital switching transients are composed largely of high frequency components, the skin effect tells us that total ground plane copper weight will have little effect upon the logic-generated noise. Total surface area is more important than is total ground plane volume. Coupling between the typically noisy digital circuitry and the sensitive analog circuitry can lead to poor performance that may seem impossible to isolate and remedy. The solution is to keep the analog circuitry well separated from the digital circuitry.
High power digital components should not be located on or near any linear component or power supply trace or plane that services analog or mixed signal components as the resulting common return current path could cause fluctuation in the analog input "ground" return of the ADC, causing excessive noise in the conversion result.

Generally, we assume that analog and digital lines should cross each other at 90° to avoid getting digital noise into the analog path. In high frequency systems, however, avoid crossing analog and digital lines altogether. The input clock lines should be isolated from ALL other lines, analog AND digital. The generally accepted 90° crossing should be avoided as even a little coupling can cause problems at high frequencies. Best performance at high frequencies is obtained with a straight signal path.

The analog input should be isolated from noisy signal traces to avoid coupling of spurious signals into the input. This is especially important with the low level drive required of the ADC081500. Any external component (e.g., a filter capacitor) connected between the converter's input and ground should be connected to a very clean point in the analog ground plane. All analog circuitry (input amplifiers, filters, etc.) should be separated from any digital components.

DYNAMIC PERFORMANCE

The ADC081500 is a.c. tested and its dynamic performance is specified. To meet the published specifications and avoid jitter-induced noise, the clock source driving the CLK input must exhibit low rms jitter. The allowable jitter is a function of the input frequency and the input signal level, as described in THE CLOCK INPUTS.
It is good practice to keep the ADC input clock line as short as possible, to keep it well away from any other signals and to treat it as a transmission line. Other signals can introduce jitter into the input clock signal. The clock signal can also introduce noise into the analog path if not isolated from that path.
Best dynamic performance is obtained when the exposed pad at the back of the package has a good connection to ground. This is because this path from the die to ground is a lower impedance than offered by the package pins.

USING THE SERIAL INTERFACE

The ADC081500 may be operated in the Normal control mode (using control pins) or in the Extended control mode (using a serial interface and register set). Table 9 and Table 10 describe the functions of pins 3, 4, 14 and 127 in the Normal control mode and the Extended control mode, respectively.

Normal Control Mode Operation

Normal control mode operation means that the Serial Interface is not active and all controllable functions are controlled with various pin settings. That is, the full-scale range, the power on calibration delay, the output voltage and the input coupling (a.c. or d.c.). The Normal control mode is used by setting pin 14 high or low, as opposed to letting it float. Table 9 indicates the pin functions of the ADC081500 in the Normal control mode.

Table 9. Normal Control Mode Operation
(Pin 14 High or Low)

Pin	Low	High	Floating
3	Reduced $V_{O D}$	Normal $V_{O D}$	n / a
4	OutEdge $=$ Neg	OutEdge $=$ Pos	DDR
127	CalDly Short	CalDly Long	n / a
14	Reduced $V_{I N}$	Normal $V_{I N}$	Extended Control Mode

Pin 3 can be either high or low in the Normal control mode. Pin 14 must not be left floating to select this mode. See NORMAL/EXTENDED CONTROL MODES for more information.
Pin 4 can be high or low or can be left floating in the Normal control mode. In the Normal control mode, pin 4 high or low defines the edge at which the output data transitions. See Output Edge Synchronization for more information. If this pin is floating, the output clock (DCLK) is a DDR (Double Data Rate) clock (see Double Data Rate) and the output edge synchronization is irrelevant since data is clocked out on both DCLK edges.
Pin 127 in the non-extended control mode sets the calibration delay. Pin 127 is not designed to remain floating.

Table 10. Extended Control Mode Operation
(Pin 14 Floating)

Pin	Function
3	SCLK (Serial Clock)
4	$\overline{\text { SDATA (Serial Data) }}$
127	$\overline{\text { SCS }}$ (Serial Interface Chip Select)

COMMON APPLICATION PITFALLS

Failure to write all register locations when using extended control mode. When using the serial interface, all 3 user registers must be written at least once with the default or desired values before calibration and subsequent use of the ADC. Once all registers have been written once, other desired settings can be loaded.
Driving the inputs (analog or digital) beyond the power supply rails.For device reliability, no input should go more than 150 mV below the ground pins or 150 mV above the supply pins. Exceeding these limits on even a transient basis may not only cause faulty or erratic operation, but may impair device reliability. It is not uncommon for high speed digital circuits to exhibit undershoot that goes more than a volt below ground. Controlling the impedance of high speed lines and terminating these lines in their characteristic impedance should control overshoot.
Care should be taken not to overdrive the inputs of the ADC081500. Such practice may lead to conversion inaccuracies and even to device damage.
Incorrect analog input common mode voltage in the d.c. coupled mode. As discussed in THE ANALOG INPUT and D.C. Coupled Input, the Input common mode voltage must remain within 50 mV of the $\mathrm{V}_{\text {Смо }}$ output, which has a variability with temperature that must also be tracked. Distortion performance will be degraded if the input common mode voltage is more than 50 mV from $\mathrm{V}_{\text {CMO }}$.
Using an inadequate amplifier to drive the analog input. Use care when choosing a high frequency amplifier to drive the ADC081500 as many high speed amplifiers will have higher distortion than will the ADC081500, resulting in overall system performance degradation.
Driving the V_{BG} pin to change the reference voltage. As mentioned in THE REFERENCE VOLTAGE, the reference voltage is intended to be fixed by FSR pin or Full-Scale Voltage Adjust register settings. Over driving this pin will not change the full scale value, but can otherwise upset operation.
Driving the clock input with an excessively high level signal. The ADC input clock level should not exceed the level described in the Operating Ratings Table or the input offset could change.
Inadequate input clock levels. As described in THE CLOCK INPUTS, insufficient input clock levels can result in poor performance. Excessive input clock levels could result in the introduction of an input offset.
Using a clock source with excessive jitter, using an excessively long input clock signal trace, or having other signals coupled to the input clock signal trace. This will cause the sampling interval to vary, causing excessive output noise and a reduction in SNR performance.
Failure to provide adequate heat removal. As described in Thermal Management, it is important to provide adequate heat removal to ensure device reliability. This can be done either with adequate air flow or the use of a simple heat sink built into the board. The backside pad should be grounded for best performance.

REVISION HISTORY

[^1]
PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
ADC081500CIYB/NOPB	ACTIVE	HLQFP	NNB	128	60	RoHS \& Green	SN	Level-3-260C-168 HR	-40 to 85	ADC081500 CIYB	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: Tl defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TRAY

Chamfer on Tray corner indicates Pin 1 orientation of packed units.
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (${ }^{\circ} \mathrm{C}$)	L (mm)	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{K0} \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{CL} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { CW } \\ \text { (mm) } \end{gathered}$
ADC081500CIYB/NOPB	NNB	HLQFP	128	60	5×12	150	322.6	135.9	7620	25.4	17.8	17.55

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
 Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^1]: - Changed layout of National Data Sheet to TI format

