

150 mA - ultra low noise - high PSRR linear voltage regulator IC

Datasheet - production data

Features

- Ultra low noise: 6.3 μV_{RMS} from 10 Hz to 100 kHz
- Input voltage from 2.1 to 5.5 V
- Very low quiescent current (35 μA typ. at no load, 70 μA typ. at 150 mA load; 2 μA max. in off mode)
- Output voltage tolerance: ± 1% at 25 °C
- 150 mA guaranteed output current
- Wide range of output voltage from 0.8 V to 3.3 V with 100 mV step
- Logic-controlled electronic shutdown
- Compatible with ceramic capacitor (C_{OUT} = 0.47 μF)
- No bypass capacitor is required
- Internal current and thermal limit
- Package DFN6 (2 x 2 mm)
- Temperature range: 40 °C to 125 °C

Description

The LDLN015 is an ultra low noise linear regulator which provides 150 mA maximum current from an input voltage ranging from 2.1 V to 5.5 V with a typical dropout voltage of 86 mV. With its $6.3 \mu V_{RMS}$ noise value in a band from 10 Hz to 100 kHz, the LDLN015 provides a very clean output suitable for ultra sensitive loads. It is stable with ceramic capacitors. High PSRR, low quiescent current and very low noise features make it suitable for low power battery powered applications. Power supply rejection is higher than 90 dB at low frequencies and starts to roll off at 10 kHz. The enable logic control function puts the LDLN015 into shutdown mode allowing a total current consumption lower than 1 µA. The device also includes a short-circuit constant current limiting and thermal protection. Typical applications are noise sensitive loads like ADC, VCO in mobile phones, and personal digital assistants (PDAs).

Table 1: Device summary

Order code	Output voltage (V)
LDLN015PU10R	1.0
LDLN015PU12R	1.2
LDLN015PU15R	1.5
LDLN015PU18R	1.8
LDLN015PU25R	2.5
LDLN015PU28R	2.8
LDLN015PU30R	3.0
LDLN015PU33R	3.3

May 2017 DocID022735 Rev 5 1/16

Contents LDLN015

Contents

1	Applica	ntion diagram	3
2	Pin con	figuration	4
3	Maximu	ım ratings	5
4	Electric	cal characteristics	6
5	Typical	performance characteristics	8
6	Packag	e information	12
	6.1	DFN6 (2 x 2 mm) package information	12
	6.2	DFN6 (2 x 2 mm) packing information	14
7	Revisio	n history	15

1 Application diagram

Figure 1: Block diagram

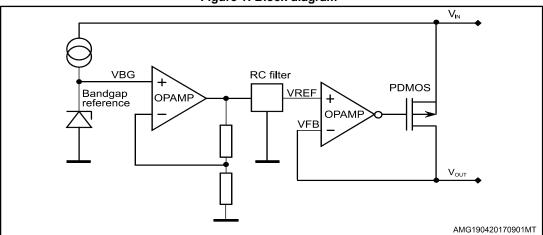
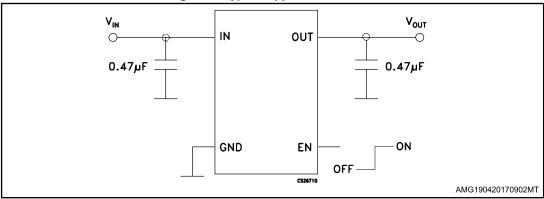



Figure 2: Typical application circuit

Pin configuration LDLN015

2 Pin configuration

Figure 3: Pin connections (top view)

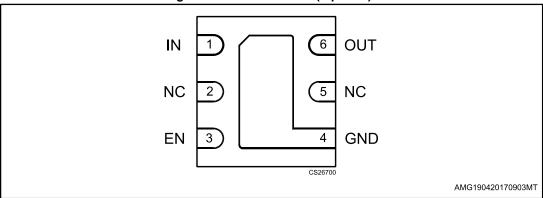


Table 2: Pin description

Pin	Symbol	Name and function	
1	IN	Input voltage	
2	NC	Not connected	
		Enable input.	
3	3 EN Set V _{EN} > 0.9 to turn on the device		
Set V _{EN} < 0.4 to turn off the device			
4	GND	Ground	
5	NC	Not connected	
6	OUT	Output voltage	

Exposed pad is electrically connected to GND.

LDLN015 Maximum ratings

3 Maximum ratings

Table 3: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vin	DC input voltage	-0.3 to 7	V
V _{OUT}	DC output voltage	From -0.3 to 4.6	V
V _{EN}	Enable input voltage	From -0.3 to V _{IN} + 0.3	V
Іоит	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-65 to 150	°C
Тор	Operating junction temperature range	-40 to 125	°C
ECD.	Human body model	±3	kV
ESD	Machine model	±300	V

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4: Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient	105	°C/W
R _{th} JC	Thermal resistance junction-case	20	°C/W

Electrical characteristics LDLN015

4 Electrical characteristics

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 V, C_{IN} = C_{OUT} = 0.47 $\mu F,\ I_{OUT}$ = 1 mA, V_{EN} = $V_{IN},\ unless$ otherwise specified.

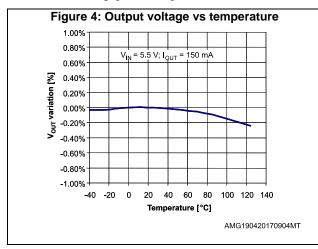
Table 5: Electrical characteristics

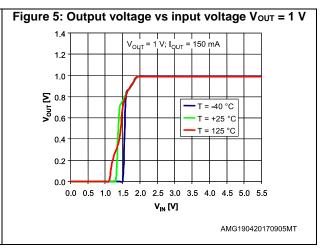
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage		2.1		5.5	V
		I _{OUT} = 1 mA	-1		1	
Vоит	V _{OUT} accuracy	-40 °C < T _J < 125 °C, I _{OUT} = from 1 mA to 150 mA, V _{IN} = V _{OUT(NOM)} + 1 V to 5.5 V	-2		2	%
ΔV_{OUT}	Static line regulation	V_{OUT} + 1 V \leq V _{IN} \leq 5.5 V, I_{OUT} = 1 mA		0.005		%/V
ΔV_{OUT}	Static load regulation	I _{OUT} = 1 mA to 150 mA		0.001		%/mA
VDROP	Dropout voltage (1)	I _{OUT} = 150 mA, V _{OUT} > 1.9 V -40 °C < T _J < 125 °C		86	180	mV
		10 Hz to 100 kHz, Iout = 0 mA, Vout = 1.0 V		6.3		.,
en	Output noise voltage	10 Hz to 100 kHz, I _{OUT} = 150 mA, V _{OUT} = 1.0 V		9.9		μV _{RMS}
	SVR Supply voltage rejection Vout = 1.0 V	V _{IN} = V _{OUTNOM} + 1 V +/-V _{RIPPLE} V _{RIPPLE} = 0.5 V Freq. = 1 kHz I _{OUT} = 10 mA		92		
SVR		VIN = VOUTNOM + 1 V +/-VRIPPLE VRIPPLE = 0.5 V Freq. = 10 kHz IOUT = 10 mA		89		dB
	VIN = VOUTNOM + 1 V+/-VRIPPLE VRIPPLE = 0.5 V Freq. = 100 kHz IOUT = 1 mA		50			
lα	Quiescent current	IOUT = 0 mA, -40 °C < TJ < 125 °C IOUT = 150 mA, -40 °C < TJ < 125 °C		35 70	60 120	μА
		V_{IN} input current in OFF mode $V_{EN} = \text{GND}$		0.002	2	
I _{SC}	Short-circuit current	R _L = 0 V _{IN} = 2.0 V	300			mA

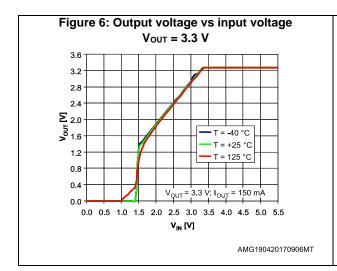
LDLN015 Electrical characteristics

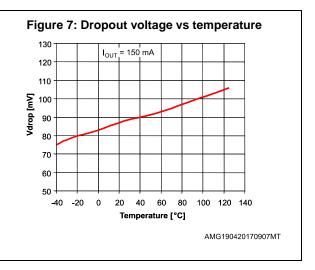
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
	Enable input logic low	V _{IN} = 2.1 V to 5.5 V, -40 °C < T _J < 125 °C			0.4	V
Ven	Enable input logic high	V _{IN} = 2.1 V to 5.5 V, -40 °C < T _J < 125 °C	0.9			V
I _{EN}	Enable pin input current	V _{EN} = 5.5 V		0.1	100	nΑ
Ton	Turn-on time (2)			110		μs
Т	Thermal shutdown			166		٥°
T _{SHDN}	Hysteresis			10		
Соит	Output capacitor	Capacitance (see Figure 15: "Stability area")	0.33		4.7	μF

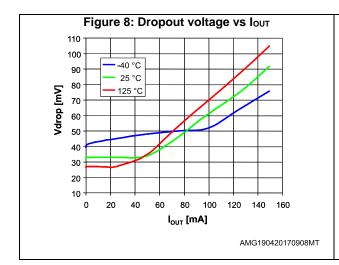
Notes:

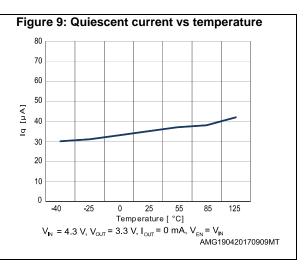

Note:

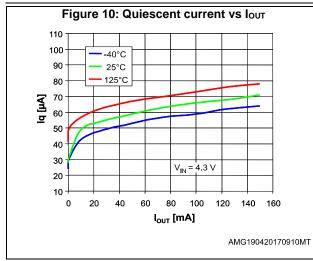

- For $V_{OUT(NOM)} < 1.0 \text{ V}$, $V_{IN} = 2 \text{ V}$
- All transient values are guaranteed by design, not production tested


⁽¹⁾Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply for output voltages below 2 V.


 $^{^{(2)}}$ Turn-on time is time measured between the enable input just exceeding V_{EN} high value and the output voltage just reaching 95% of its nominal value.

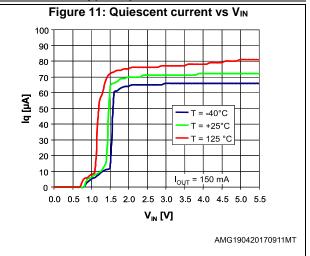
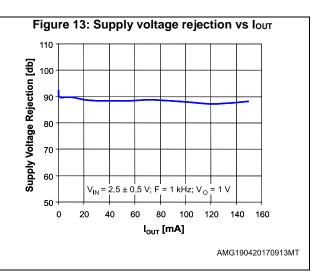
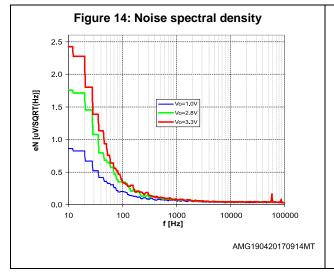
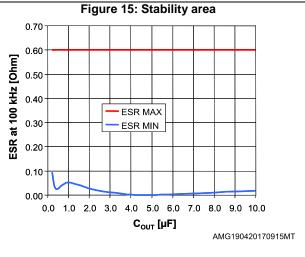

5 Typical performance characteristics

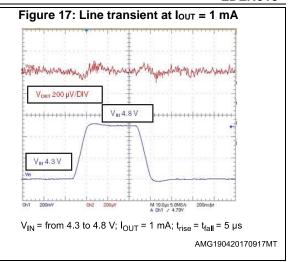


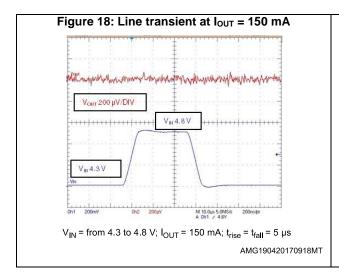


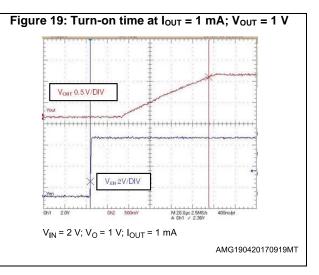
577

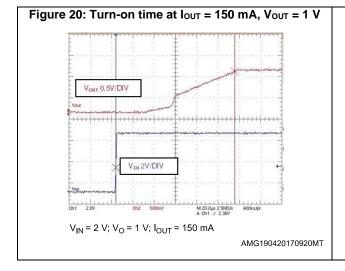
8/16

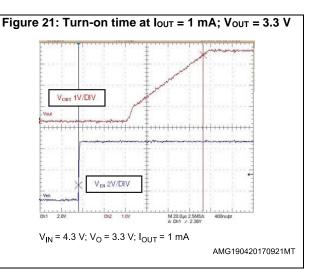





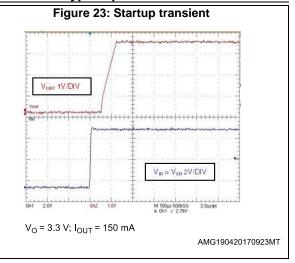

Figure 12: Supply voltage rejection vs frequency


100
100
100
1000
10000
100000
100000
100000
100000
100000









Package information LDLN015

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

6.1 DFN6 (2 x 2 mm) package information

Figure 24: DFN6 (2 x 2 mm) package outline

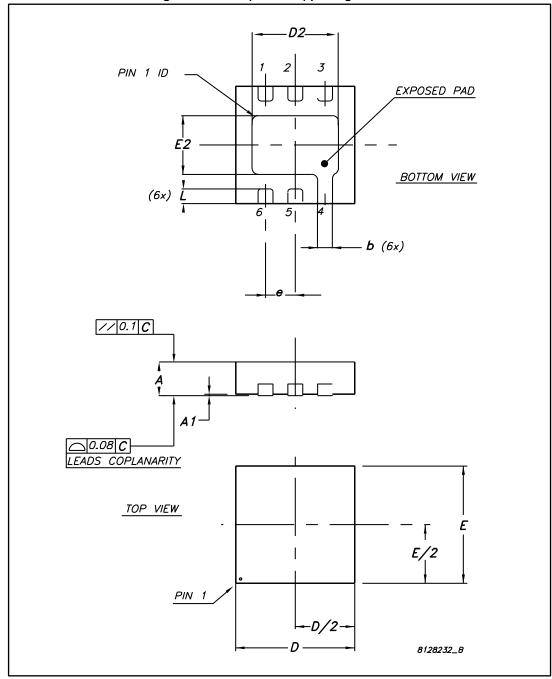
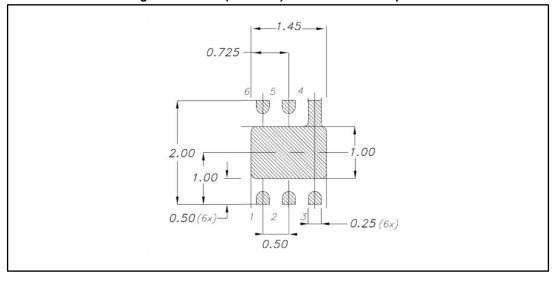



Table 6: DFN6 (2 x 2 mm) mechanical data

Dim	mm			
Dim.	Min.	Тур.	Max.	
А	0.51	0.55	0.60	
A1	0	0.02	0.05	
b	0.18	0.25	0.30	
D		2.00		
D2	1.30	1.45	1.55	
Е		2.00		
E2	0.85	1.00	1.10	
е		0.50		
L	0.15	0.25	0.35	

Figure 25: DFN6 (2 x 2 mm) recommended footprint

6.2 DFN6 (2 x 2 mm) packing information

Figure 26: DFN6 (2 x 2 mm) reel outline

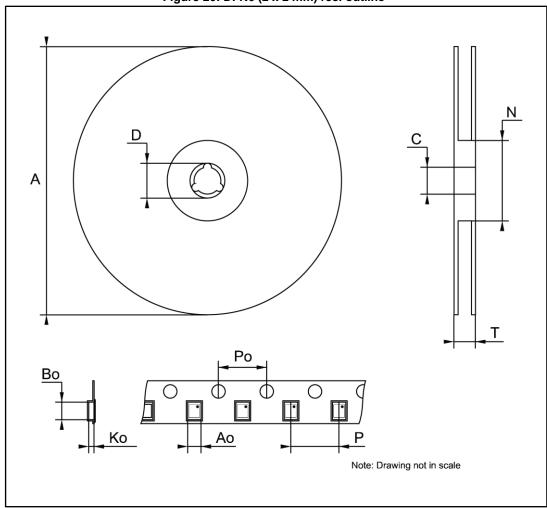


Table 7: DFN6 (2 x 2 mm) tape and reel mechanical data

rable 1. bi No (2 x 2 iiiii) tape and reel mechanical data				
Dim.		mm		
	Min.	Тур.	Max.	
А			180	
С	12.8		13.2	
D	20.2			
N	60			
Т			14.4	
A0		2.4		
В0		2.4		
K0		1.3		
P0		4		
Р		4		

LDLN015 Revision history

7 Revision history

Table 8: Document revision history

Date	Revision	Changes
31-Jan-2012	1	Initial release.
15-Jan-2014	2	Changed the LDLN015xx to LDLN015. Updated the Description in cover page. Updated Table 1: Device summary, Section 5: Typical performance characteristics and Section 6: Package information. Added Section 6.2: DFN6 (2 x 2 mm) packing information. Minor text changes.
14-Jan-2015	3	Updated the features in cover page. Updated Table 5: Electrical characteristics and Figure 9: Quiescent current vs. temperature. Minor text changes.
26-Oct-2015	4	Modified Section 6: Package information. Minor text changes.
18-May-2017	5	Updated Section 6.1: "DFN6 (2 x 2 mm) package information". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

