

STP410N4F7AG

Automotive-grade N-channel 40 V, 1.5 mΩ typ., 180 A STripFET™ F7 Power MOSFET in a TO-220 package

Datasheet - production data

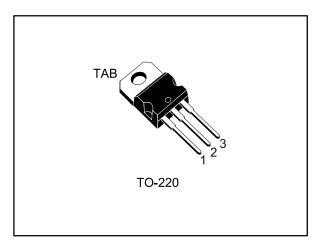
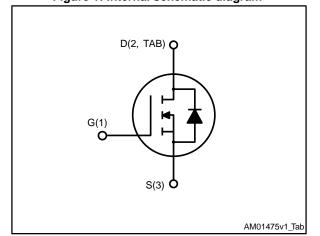



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	Ι _D	Ртот
STP410N4F7AG	40 V	1.8 mΩ	180 A	365 W

- Designed for automotive applications and AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STP410N4F7AG	410N4F7	TO-220	Tube

Contents STP410N4F7AG

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	TO-220 package information	10
5	Revisio	on history	12

STP410N4F7AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	40	V	
V_{GS}	Gate-source voltage	±20	٧	
Ip ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	180	۸	
ID ¹⁷	Drain current (continuous) at T _{case} = 100 °C	180	Α	
I _{DM} ⁽²⁾	Drain current (pulsed)	720	Α	
Ртот	Total dissipation at T _{case} = 25 °C	365	W	
E _{AS} (3)	Single pulse avalanche energy	1.9	J	
T _{stg}	Storage temperature range	55 to 175	°C	
Tj	Operating junction temperature range			

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit	
R _{thj-case}	Thermal resistance junction-case	0.41	9 C AA4	
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W	

 $^{^{(1)}}$ Current is limited by package, the current capability of the silicon is 350 A at 25 $^{\circ}\text{C}.$

⁽²⁾ Pulse width is limited by safe operating area.

 $^{^{(3)}}T_j \le 175~^{\circ}C, I_{av}=80A$

Electrical characteristics STP410N4F7AG

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	40			V
	Zoro goto voltago drain	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V}$			10	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V},$ $T_{case} = 125 \text{ °C}^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = 20 V			200	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 90 A		1.5	1.8	mΩ

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	11700	ı	
Coss	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V	-	3500	ı	pF
C _{rss}	Reverse transfer capacitance	VBS = 20 V, 1 = 1 Winz, VBS = 0 V	-	390	ı	Pi
Q_g	Total gate charge	$V_{DD} = 20 \text{ V}, I_D = 180 \text{ A}, V_{GS} = 10 \text{ V}$	-	140	ı	
Qgs	Gate-source charge	(see Figure 14: "Test circuit for	-	65		nC
Q_{gd}	Gate-drain charge	gate charge behavior")	-	27	-	

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, I_D = 90 \text{ A R}_G = 4.7 \Omega,$	-	35	-	
tr	Rise time	V _{GS} = 10 V (see Figure 13: "Test circuit for resistive load switching	-	200	-	
t _{d(off)}	Turn-off delay time		-	110	-	ns
tf	Fall time	times" and)	-	44	-	

⁽¹⁾Defined by design, not subject to production test.

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		180	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 90 A	-		1.3	V
t _{rr}	Reverse recovery time	I _{SD} = 180 A, di/dt = 100 A/μs,	1	74.4		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 32 V, T _j = 25 °C (see <i>Figure 15</i> : "Test circuit for inductive load	1	115		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	3.1		Α

Notes:

 $^{^{(1)}}$ Current is limited by package, the current capability of the silicon is 350 A at 25 $^{\circ}$ C.

 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area GADG260520161425SOA Ι_D (A) 10² t_p= 100µs Operation in this area is limited by R_{DS(on)} 10¹ t_p= 1ms T _j≤ 175 °C T_c= 25 °C t_p= 10ms single pulse 10° $\bar{V}_{DS}(V)$ 10° 10¹

Figure 3: Thermal impedance K GADG260520161440ZTH δ =0.5 0.2 0.01 0.05 0.02 0.01 Single pulse $Z_{n=k^*R_{npc}}^{-k^*R_{npc}}$ δ =b/T δ =b/T δ =10 $^{-1}$ δ 10 $^{-2}$ 10 $^{-1}$ δ (s)

Figure 4: Output characteristics

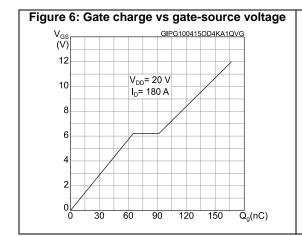
GADG260520161449OCH

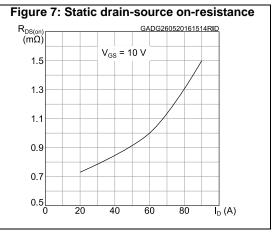
(A)

V_{GS} = 7, 8, 9, 10 V

250

V_{GS} = 6 V


200


V_{GS} = 5.5 V

150

0

1 2 3 4 5 V_{DS} (V)

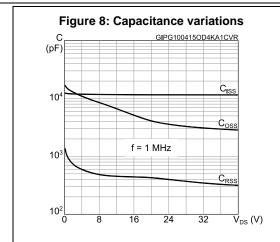


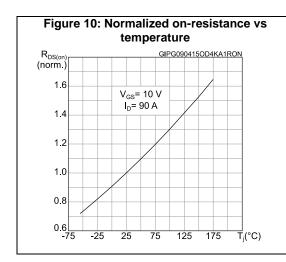
Figure 9: Normalized gate threshold voltage vs temperature

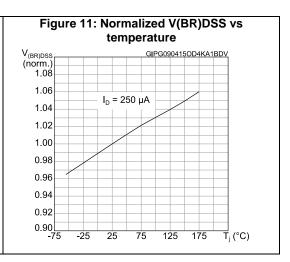
V_{GS(th)}
(norm.)

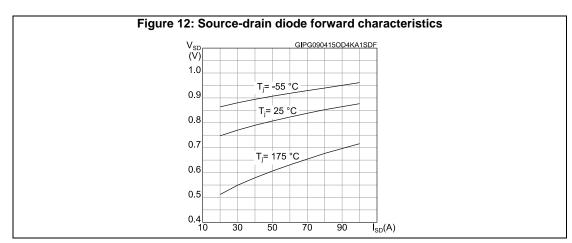
1.2

1.0

I_D = 250 µA


0.8


0.6


0.4

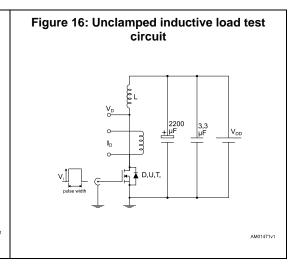
0.2

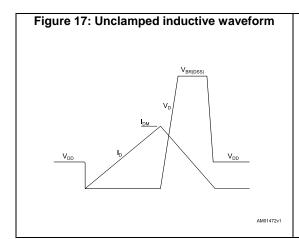
-75 -25 25 75 125 175 T_j (°C)

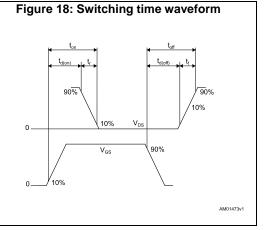
Test circuits STP410N4F7AG

3 Test circuits

Figure 13: Test circuit for resistive load switching times


Figure 14: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.


Vos 1 1 kΩ 100 nF D.U.T.

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times

577

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220 package information

Figure 19: TO-220 type A package outline

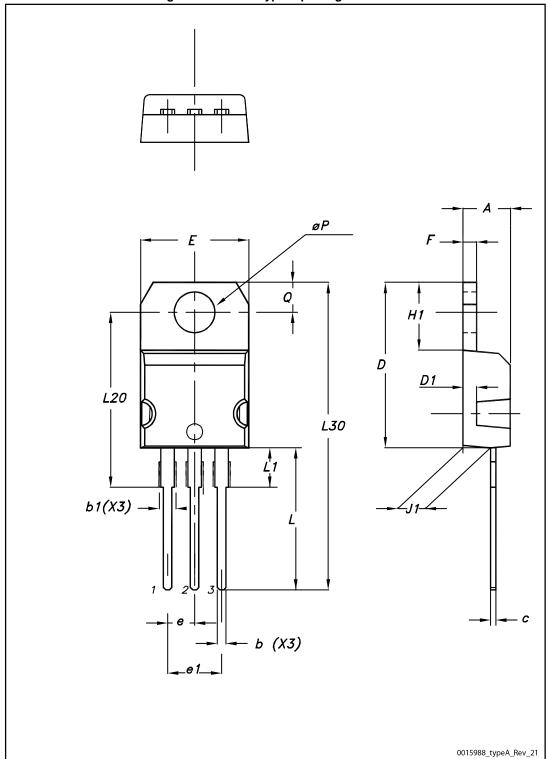


Table 8: TO-220 type A mechanical data

Dim	mm		
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

Revision history STP410N4F7AG

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
25-May-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

