

STI175N4F6AG

Automotive-grade N-channel 40 V, 2.1 mΩ typ., 120 A STripFET™ F6 Power MOSFET in an I²PAK package

Datasheet - production data

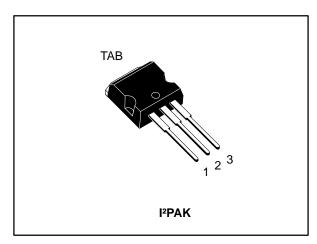
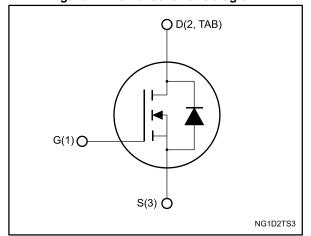



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	Ртот
STI175N4F6AG	40 V	2.7 mΩ	120 A	190 W

- Designed for automotive applications and AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

- Switching applications
- Power tools

Description

This device is an N-channel Power MOSFET developed using the STripFETTM F6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{DS(on)}$ in all packages.

Table 1: Device summary

Order code	Marking	Package	Packing
STI175N4F6AG	175N4F6	I²PAK	Tube

Contents STI175N4F6AG

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	I2PAK package information	9
5	Revisio	on history	11

STI175N4F6AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	٧
V_{GS}	Gate-source voltage	±20	٧
Ip ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	120	^
ID ^(*)	Drain current (continuous) at T _{case} = 100 °C	120	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	480	Α
Ртот	Total dissipation at T _{case} = 25 °C	190	W
T _{stg}	Storage temperature range	FF to 47F	°C
Tj	Operating junction temperature range		°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case 0.79		°C/W
R _{thj-amb}	Thermal resistance junction-amb	62.5	C/VV

⁽¹⁾ Limited by package

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

Electrical characteristics STI175N4F6AG

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	40			٧
	Zaro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V}$			1	
IDSS	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 40 V, T _{case} = 125 °C			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3		4.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 60 A		2.1	2.7	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	7735	ı	
Coss	Output capacitance	$V_{DS} = 20 \text{ V}, f = 1 \text{ MHz},$	-	745	ı	pF
Crss	Reverse transfer capacitance	Ves = 0 V	-	560	-	ρ.
Q_g	Total gate charge	$V_{DD} = 20 \text{ V}, I_D = 120 \text{ A},$	-	130	ı	
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 14: "Test circuit for gate charge	-	36	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	42	1	

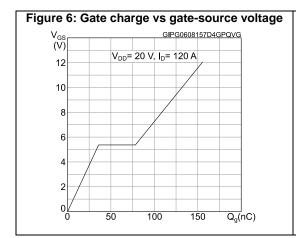
Table 6: Switching times

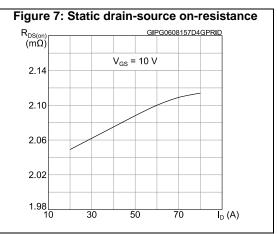
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, I_D = 60 \text{ A R}_G = 4.7 \Omega,$	-	24	-	
tr	Rise time	V _{GS} = 10 V (see Figure 13: "Test	-	150	-	
t _{d(off)}	Turn-off delay time	circuit for resistive load switching times" and Figure 18: "Switching	-	106	-	ns
t _f	Fall time	time waveform")	-	57	-	

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		ı		120	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		480	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 120 A	-		1.3	V
t _{rr}	Reverse recovery time	I _{SD} = 120 A, di/dt = 100 A/µs,	-	36		ns
Qrr	Reverse recovery charge	V _{DD} = 32 V (see Figure 15: "Test circuit for inductive load	-	40		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	2.3		Α

Notes:


⁽¹⁾ Limited by package.


 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area GIPG0608157D4GPSOA Operation in this area is limited 10² 100 µs 1 ms 10¹ 10 ms T_i= 175 °C T_c= 25 °C single pulse 10° $\bar{V}_{DS}(V)$ 10° 10¹

Figure 3: Thermal impedance $K = \frac{10^{-1}}{\delta = 0.5}$ $\delta = 0.2$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.03$ $\delta = 0.03$

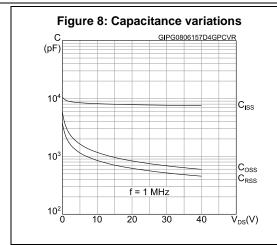
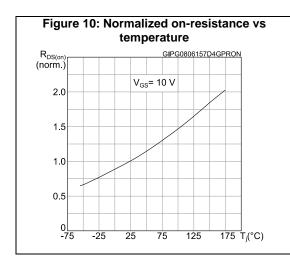


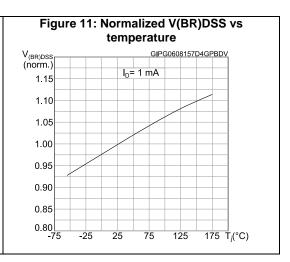
Figure 9: Normalized gate threshold voltage vs temperature

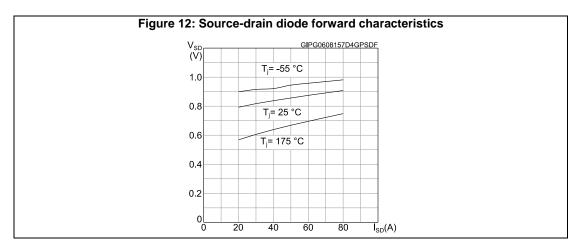
V_{GS(th)}
(norm.)

1.2

1.0


0.8


0.6


0.4

0.2

0.75
-25
25
75
125
150
T_j(°C)

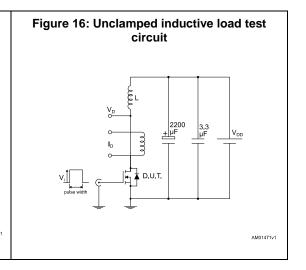
Test circuits STI175N4F6AG

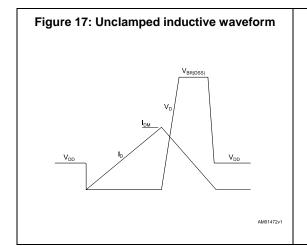
3 Test circuits

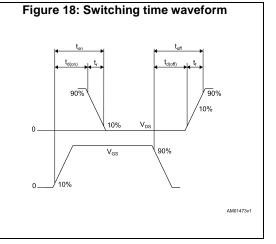
Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.


12 V 47 KΩ VG


14 KΩ VG


14 KΩ VG

AM01468v1

Figure 15: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 I²PAK package information

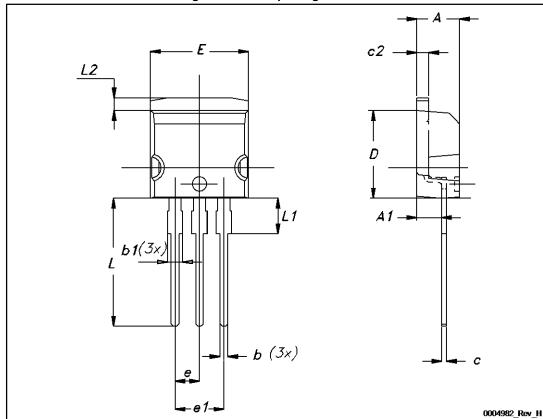


Figure 19: I²PAK package outline

Table 8: I²PAK package mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
А	4.40	_	4.60		
A1	2.40	_	2.72		
b	0.61	_	0.88		
b1	1.14	_	1.70		
С	0.49	_	0.70		
c2	1.23	_	1.32		
D	8.95	_	9.35		
е	2.40	_	2.70		
e1	4.95	_	5.15		
Е	10	_	10.40		
L	13	_	14		
L1	3.50	_	3.93		
L2	1.27	_	1.40		

STI175N4F6AG Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
26-Jan-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

