

SCTWA10N120

Silicon carbide Power MOSFET: 12 A, 1200 V, 550 mΩ (typ., T_J=150 °C), N-channel in an HiP247[™] long leads

Datasheet - preliminary data

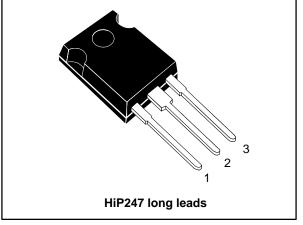
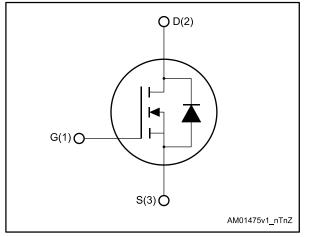



Figure 1: Internal schematic diagram

Features

- Very tight variation of on-resistance vs. temperature
- Slight variation of switching losses vs. temperature
- Very high operating temperature capability (200 °C)
- Very fast and robust intrinsic body diode
- Low capacitance
- Easy to drive

Applications

- Solar inverters, UPS
- Motor drives
- High voltage DC-DC converters
- Switch mode power supplies

Description

This silicon carbide Power MOSFET is produced exploiting the advanced, innovative properties of wide bandgap materials. This results in unsurpassed on-resistance per unit area and very good switching performance almost independent of temperature. The outstanding thermal properties of the SiC material, combined with the device's housing in the proprietary HiP247[™] package, allows designers to use an industry-standard outline with significantly improved thermal capability. These features render the device perfectly suitable for highefficiency and high power density applications.

Table 1: Device summary

Order code	Marking	Package	Packaging
SCTWA10N120	SCT10N120	HiP247™ long leads	Tube

2

February 2016

DocID029057 Rev 1

commonly referred to as "halogen-free". See Section 6: "Package information".

The device meets ECOPACK standards, an environmentally-friendly grade of products

1/10

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. www.st.com

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
3	Test circuits	6
4	Package information	7
	4.1 HiP247 [™] long leads package information	7
5	Revision history	9

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	1200	V
V _{GS}	Gate-source voltage	-10/+25	V
lo	Drain current (continuous) at T _C = 25 °C	12	А
lo	Drain current (continuous) at T _c = 100 °C	10	А
IDM ⁽¹⁾	Drain current (pulsed)	24	А
Ртот	Total dissipation at $T_c = 25 \ ^{\circ}C$	110	W
T _{stg}	T _{stg} Storage temperature range		°C
Tj	Operating junction temperature range	-55 to 200	

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by safe operating area.

Symbol Parameter		Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1.6	°C/W
Rthj-amb Thermal resistance junction-ambient max		40	°C/W

Table 3: Thermal data

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified).

Table 4: On/off state	es
-----------------------	----

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 V, I_D = 1 mA$	1200			V
	Zero gate voltage	V_{DS} = 1200 V, V_{GS} = 0 V			10	μA
IDSS	drain current	$V_{DS} = 1200 \text{ V}, V_{GS} = 0 \text{ V},$ $T_J = 200 \text{ °C} (1)$			100	μA
lgss	Gate-body leakage current	$V_{DS} = 0 V, V_{GS} = +22 /-10 V$			100	nA
$V_{GS(th)}$	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	1.8	3.5		V
		$V_{GS} = 20 \text{ V}, \text{ I}_{D} = 6 \text{ A}$		520	690	mΩ
RDS(on)	Static drain-source on-resistance	$V_{GS} = 20 \text{ V}, I_D = 6 \text{ A},$ $T_J = 150 ^{\circ}\text{C}$		550		mΩ
		$V_{GS} = 20 \text{ V}, \text{ I}_D = 6 \text{ A},$ $T_J = 200 \text{ °C}$		600		mΩ

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	300	-	pF
Coss	Output capacitance	V _{DS} = 1000 V, f = 1 MHz, V _{GS} = 0 V	-	25	-	pF
Crss	Reverse transfer capacitance	VGS – 0 V	-	9	-	pF
Qg	Total gate charge		-	21	-	nC
Q _{gs}	Gate-source charge	$V_{DD} = 800 \text{ V}, \text{ I}_D = 6 \text{ A},$ $V_{GS} = 0 / 20 \text{ V}$	-	TBD	-	nC
Q _{gd}	Gate-drain charge	VGS - 07 20 V	-	TBD	-	nC
Rg	Gate input resistance	f=1 MHz open drain	-	TBD	-	Ω

Table 5: Dynamic

Table 6: Switching	energy	(inductive load)
--------------------	--------	------------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Eon	Turn-on switching energy	V _{DD} = 800 V, I _D = 6 A	-	TBD	-	μJ
Eoff	Turn-off switching energy	$R_G\text{=}$ 4.7 $\Omega,V_{GS}\text{=}$ -2/20 V	-	TBD	-	μJ
Eon	Turn-on switching energy	$V_{DD} = 800 \text{ V}, I_D = 6 \text{ A}$	-	TBD	-	μJ
Eoff	Turn-off switching energy	R _G = 4.7 Ω, V _{GS} = -2/20 V T _J = 150 °C	-	TBD	-	μJ

Electrical characteristics

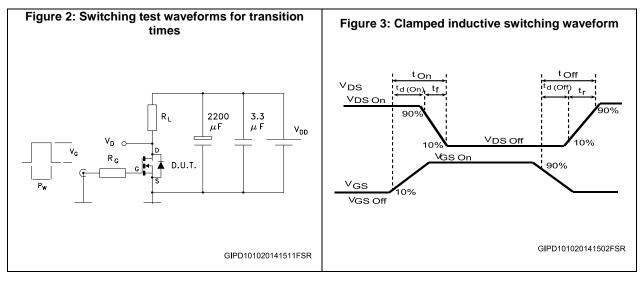

120					auto	13005
		Table 7: Switching times				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	TBD	-	ns
tr	Fall time	V _{DD} = 800 V, I _D = 6 A,	-	TBD	-	ns
td(off)	Turn-off delay time	R_G = 4.7 Ω , V_{GS} = 0/20 V	-	TBD	-	ns
tr	Rise time		-	TBD	-	ns

Table 8: Reverse SiC diode characteristics

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
V _{SD}	Diode forward voltage	$I_F = 3 \text{ A}, V_{GS} = 0 \text{ V}$	-	TBD	-	V
trr	Reverse recovery time		-	TBD		ns
Qrr	Reverse recovery charge	I _{SD} = 6 A, di/dt = 100 A/µs V _{DD} = 800 V	-	TBD	-	nC
IRRM	Reverse recovery current		-	TBD	-	А

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 HiP247[™] long leads package information

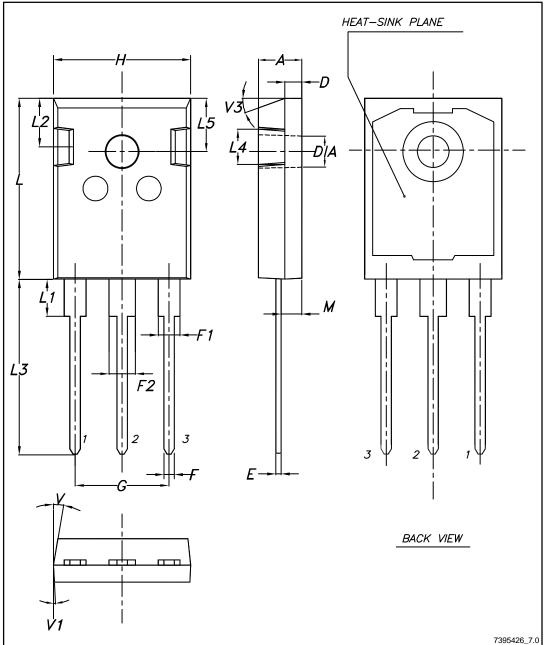


Figure 4: HiP247™ long leads package outline

DocID029057 Rev 1

Package information

SCTWA10N120

nformation			SCTWA10N120
Та	ble 9: HiP247™ long lead	ds package mechanical	data
Dim.		mm.	
Dini.	Min.	Тур.	Max.
А	4.90		5.15
D	1.85		2.10
E	0.55		0.67
F	1.07		1.32
F1	1.90		2.38
F2	2.87		3.38
G		10.90 BSC	
Н	15.77		16.02
L	20.82		21.07
L1	4.16		4.47
L2	5.49		5.74
L3	20.05		20.30
L4	3.68		3.93
L5	6.04		6.29
М	2.25		2.55
V		10°	
V1		3°	
V3		20°	
DIA	3.55		3.66

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
29-Feb-2016	1	First release

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

