

STD22NF06AG

Automotive-grade N-channel 60 V, 32 mΩ typ., 24 A STripFET™ II Power MOSFET in a DPAK package

Datasheet - production data

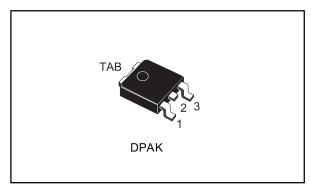
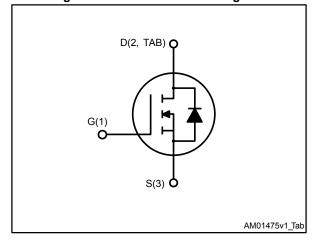



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STD22NF06AG	60 V	40 mΩ	24 A

- AEC-Q101 qualified
- Exceptional dv/dt capability
- 100% avalanche tested
- Low gate charge

Applications

Switching applications

Description

This Power MOSFET has been developed using STMicroelectronics' unique STripFET process, which is specifically designed to minimize input capacitance and gate charge. This renders the device suitable for use as primary switch in advanced high-efficiency isolated DC-DC converters for telecom and computer applications, and applications with low gate charge driving requirements.

Table 1: Device summary

Order code	Marking	Package	Packing
STD22NF06AG	D22NF06	DPAK	Tape and reel

Contents STD22NF06AG

Contents

1	Electric	eal ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A2 package information	10
	4.2	DPAK packing information	13
5	Revisio	n history	15

STD22NF06AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V _{DGR}	Drain-gate voltage (R _{GS} = 20 kΩ)	60	V
V_{GS}	Gate- source voltage	±20	V
ID	Drain current (continuous) at T _C = 25°C	24	Α
ID	Drain current (continuous) at T _C =100°C	17	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	96	Α
Ртот	Total dissipation at T _C = 25°C	60 V	
dv/dt ⁽²⁾	Peak diode recovery voltage slope	10	V/ns
E _{AS} (3)	Single pulse avalanche energy	300	mJ
Tj	Operating junction temperature range		°C
T _{stg}	Storage temperature range	- 55 to 175 °	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}I_{SD} \le 24A$, di/dt $\le 100A/\mu s$, $V_{DD} = V_{(BR)DSS}$, $Tj \le T_{JMAX}$

 $^{^{(3)}}Starting \ Tj$ = 25 °C, I_D = 10 A, V_{DD} = 45 V.

⁽¹⁾When mounted on a 1-inch² FR-4 board, 2oz Cu.

Electrical characteristics STD22NF06AG

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	V _{GS} = 0, I _D = 250 μA	60			٧
		V _{DS} = 60 V, V _{GS} = 0			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{DS} = 60 \text{ V}, V_{GS} = 0$ $T_{C} = 125^{\circ}C^{(1)}$			10	μΑ
I _{GSS}	Gate body leakage current(V _{DS} = 0)	V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 12 A		32	40	mΩ

Notes:

Table 5: Dynamic

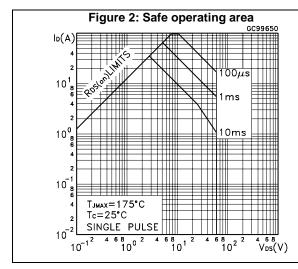
Table 0. Dynamie						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
gfs ⁽¹⁾	Forward transconductance	V _{DS} = 25 V, I _D = 12 A	İ	15	1	S
C _{iss}	Input capacitance)/ OF)/ (4 MI)	i	690		pF
Coss	Output capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0 \text{ V}$	-	170	-	pF
C _{rss}	Reverse transfer capacitance	VGS - 0 V	-	68	-	pF
t _{d(on)}	Turn-on delay time	V _{DD} = 30 V, I _D = 10 A	-	10		ns
tr	Rise time	$R_G = 4.7 \Omega V_{GS} = 10 V$	-	30		ns
t _{d(off)}	Turn-off delay time	(see Figure 14: "Test circuit for resistive load switching	ı	30		ns
t f	Fall time	times")	-	8		ns
Qg	Total gate charge	V _{DD} = 30 V, I _D = 20 A,	-	23	31	nC
Q _{gs}	Gate-source charge	$V_{GS} = 10 \text{ V}, R_{G} = 4.7 \Omega$	-	5	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	7.5	-	nC

Notes:

 $^{^{(1)}\!}$ Defined by design,not subject to production test

 $^{^{(1)}}$ Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%.

Table 6: Source drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		24	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				96	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 24 A, V _{GS} = 0 V			1.5	V
tr	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/μs	-	65	-	ns
t _{d(off)}	Reverse recovery charge	V_{DD} = 30 V, T_j = 150 °C (see <i>Figure 16: "Test circuit</i> "	i	150	-	nC
t _f	Reverse recovery current	for inductive load switching and diode recovery times")	-	4.6	-	Α

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}$ Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

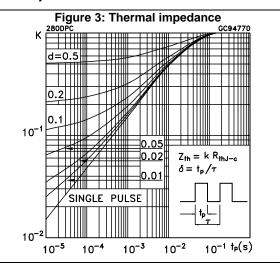
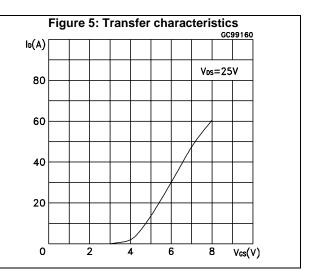
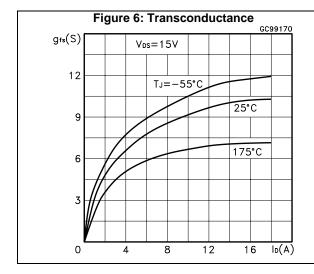


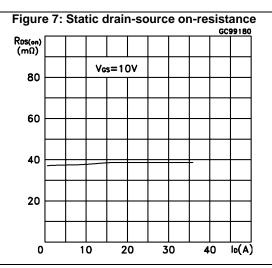
Figure 4: Output characteristics
GC99150

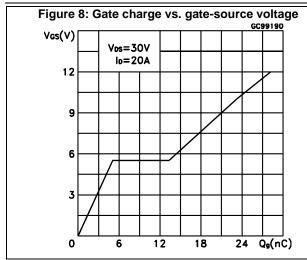
80

VGS=10V


40


7V


6V


20

4 8 12 16 VGS(V)

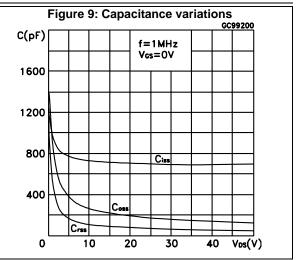


Figure 10: Normalized gate threshold voltage vs. temperature

Vcs(th)
(norm)

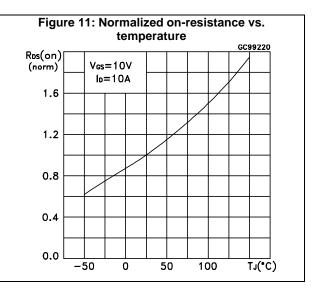
1.1

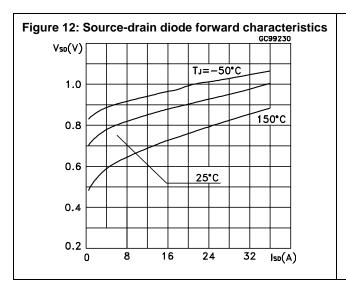
Vbs=Vcs
lo=250 \(\mu \)

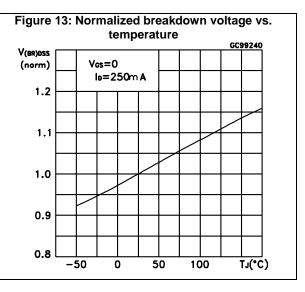
0.9

0.8

0.7

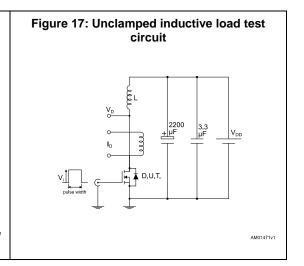

-50

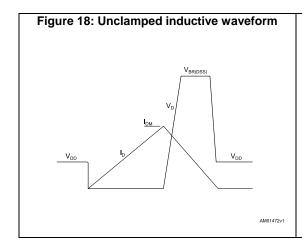

0


50

100

TJ(*C)




Test circuits STD22NF06AG

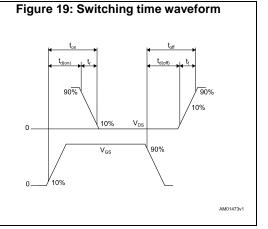

3 Test circuits

Figure 14: Test circuit for resistive load switching times

Figure 16: Test circuit for inductive load switching and diode recovery times

577

STD22NF06AG Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 DPAK (TO-252) type A2 package information

Figure 20: DPAK (TO-252) type A2 package outline E -THERMAL PAD c2 - *E1* -L2 D **b**(2x) R C SEATING PLANE <u>A2</u> (L1)

0068772_type-A2_rev21

V2

0,25

GAUGE PLANE

Table 7: DPAK (TO-252) type A2 mechanical data

Dim	mm		
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
Е	6.40		6.60
E1	5.10	5.20	5.30
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

FP_0068772_21

Figure 21: DPAK (TO-252) type A2 recommended footprint (dimensions are in mm) 6.3 6.5

STD22NF06AG Package information

4.2 DPAK packing information

Figure 22: DPAK (TO-252) tape outline

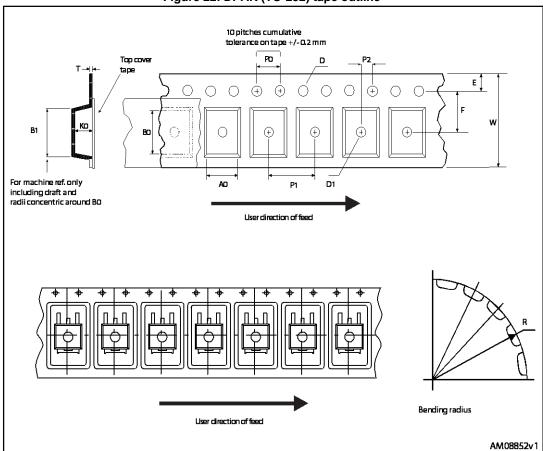


Table 8: DPAK (TO-252) tape and reel mechanical data

Таре				Reel	
Dim	mm		D:	r	nm
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Bas	se qty.	2500
P1	7.9	8.1	Bul	k qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Figure 23: DPAK (TO-252) reel outline

40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min.width

AM06038v1

STD22NF06AG Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
25-Oct-2016	1	First version.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved