
STLD125N4F6AG

Datasheet - production data

Automotive-grade N-channel 40 V, 2.4 mΩ typ., 120 A STripFET™ F6 Power MOSFET in a PowerFLAT™ 5x6 DSC

PowerFLAT™ 5x6 dual side cooling

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	RDS(on) max.	ID
STLD125N4F6AG	40 V	3.0 mΩ	120 A

- AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss
- Wettable flank package

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using the STripFETTM F6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low R_{DS(on)} in all packages.

Table 1: Device summary

Order code	Marking	Package	Packaging
STLD125N4F6AG	125	PowerFLAT™ 5x6 dual side cooling	Tape and reel

DocID029009 Rev 4

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cire	cuits	8
4	Package	e information	9
	4.1	PowerFLAT™ 5x6 dual side cooling package information	9
	4.2	PowerFLAT™ 5x6 dual side cooling packing information	11
5	Revisio	n history	12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
VDS	Drain-source voltage	40	V
V _{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾⁽²⁾	Drain current (continuous) at $T_c = 25 \text{ °C}$	120	А
ID ⁽²⁾	Drain current (continuous) at T _c = 100 °C	101	А
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	480	А
Ртот ⁽²⁾	Total dissipation at $T_c = 25 \ ^{\circ}C$	130	W
TJ	Operating junction temperature range	EE to 175	°C
T _{stg}	Storage temperature range	-55 to 175	°C

Notes:

⁽¹⁾Limited by package.

 $^{(2)}\mbox{The value is rated according to Rthj-case bottom side.}$

⁽³⁾Pulse width limited by safe operating area.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
Rthj-c top side	Thermal resistance junction-case top side	3.0	
Rthj-c bottom side	Thermal resistance junction-case bottom side	1.14	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	31.3	

Notes:

⁽¹⁾When mounted on 1 inch² 2 Oz. Cu board, t \leq 10 s

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AV}	Avalanche current, repetitive or not repetitive (pulse width limited by maximum junction temperature)	90	А
E _{AS}	Single pulse avalanche energy (T _j = 25 °C, $I_C = I_{AV}$, $V_{DD} = 16$ V)	150	mJ

2 Electrical characteristics

(Tc= 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 V$, $I_D = 1 mA$	40			V
	Zara gata valtaga Drain	$V_{GS} = 0 V, V_{DS} = 16 V$			1	μA
IDSS	Zero gate voltage Drain current	$V_{GS} = 0 V, V_{DS} = 16 V,$ Tj = 125 °C ⁽¹⁾			10	μA
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			±100	nA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	2.5		3.5	V
Provide	Static drain-source	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 75 \text{ A}$		2.4	3.0	mΩ
R _{DS(on)}	on-resistance	$V_{GS} = 6.5 \text{ V}, I_D = 75 \text{ A}$		3.0	4.0	11152

Notes:

⁽¹⁾Defined by design. Not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	5600	-	pF
Coss	Output capacitance	V _{DS} = 10 V, f = 1 MHz,		890	-	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	560	-	pF
Qg	Total gate charge	$V_{DD} = 32 V, I_D = 75 A,$	-	91	-	nC
Q _{gs}	Gate-source charge	$V_{GS} = 0$ to 10 V (see Figure 14: "Test circuit for gate charge	-	28	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	27	-	nC

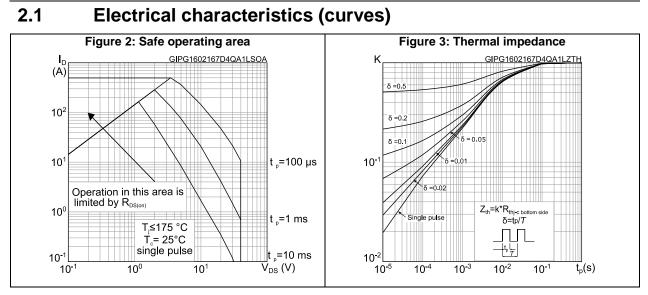
Table 6: Dynamic

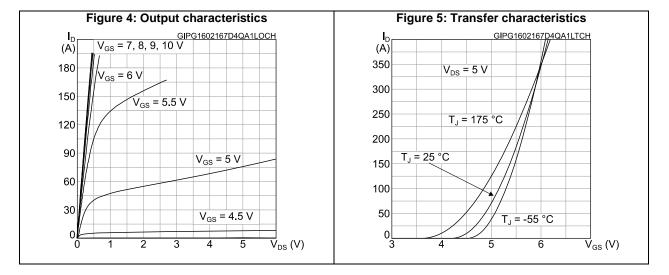
Table 7: Switching times

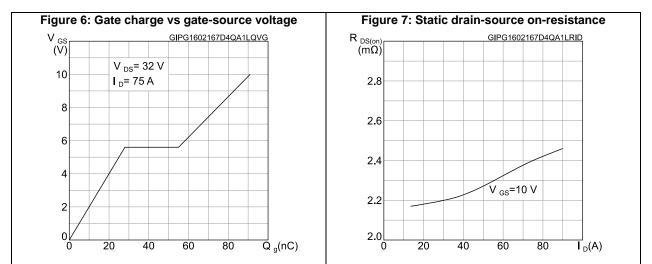
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 75 \text{ A},$	-	47	-	ns
tr	Rise time	$R_G = 30 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	-	300	-	ns
t _{d(off)}	Turn-off-delay time	resistive load switching times"	-	255	-	ns
t _f	Fall time	and Figure 18: "Switching time waveform")	-	220	-	ns

Electrical characteristics

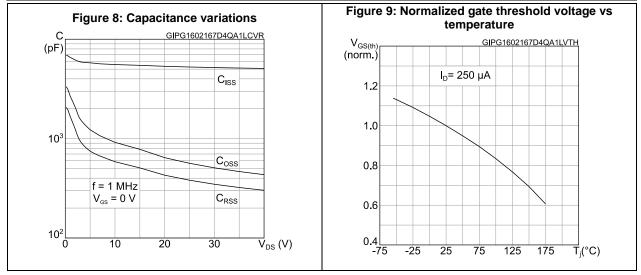
	Table 8: Source drain diode					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current	Source-drain current			120	А
I _{SDM} ⁽²⁾	Source-drain current (pulsed)				480	А
V _{SD} ⁽³⁾	Forward on voltage	$V_{GS} = 0 V$, $I_{SD} = 90 A$			1.2	V
trr	Reverse recovery time	I _{SD} = 90 A, di/dt = 100 A/µs,	-	40		ns
Qrr	Reverse recovery charge	V _{DD} = 20 V (see Figure 15: "Test circuit for inductive load		41		nC
Irrm	Reverse recovery current	switching and diode recovery times")	-	2		А

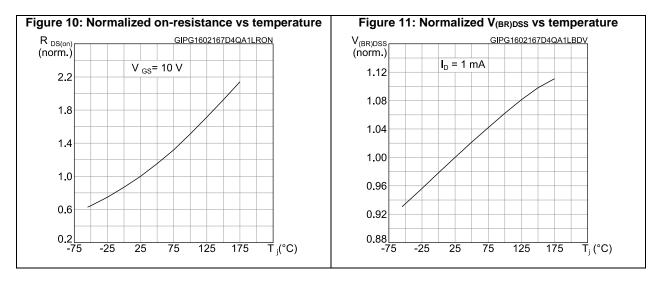

Notes:

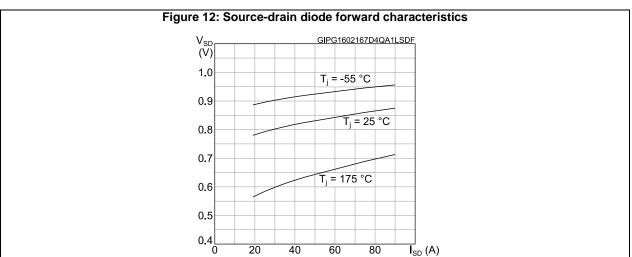

⁽¹⁾Limited by package


 $^{(2)}\mbox{Pulse}$ width is limited by safe operating area.

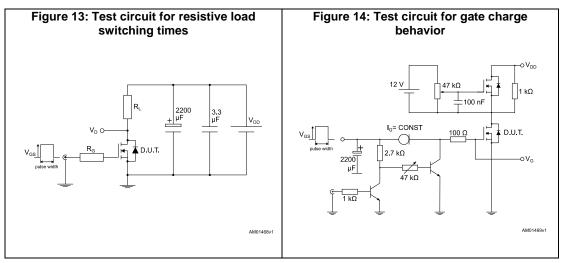
 $^{(3)}\text{Pulse test:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

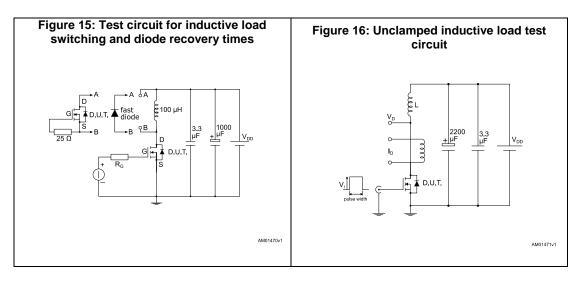


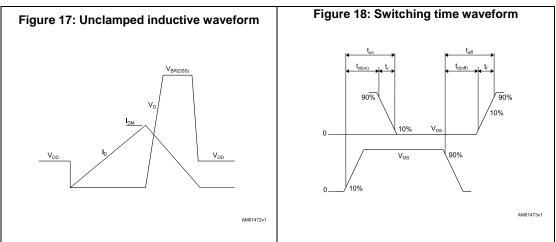



STLD125N4F6AG

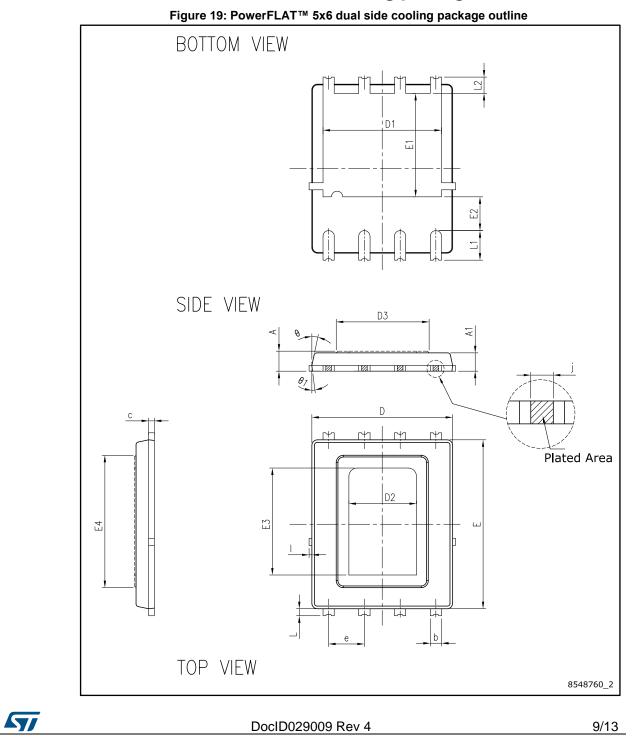
57


Electrical characteristics



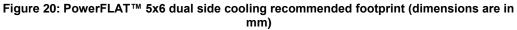


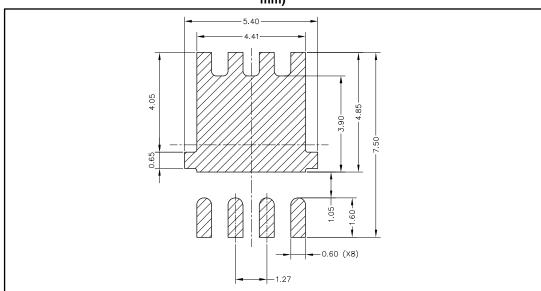
3 Test circuits



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.


4.1 PowerFLAT[™] 5x6 dual side cooling package information



Package information

STLD125N4F6AG

Tab	le 9: PowerFLAT™ 5x6 dι	al side cooling mechani	cal data	
Dim		mm		
Dim.	Min.	Тур.	Max.	
A	0.66	0.71	0.76	
A1	0.60		0.75	
b	0.33	0.43	0.53	
С	0.15	0.203	0.30	
D		5.00 BSC		
D1	4.06	4.21	4.36	
D2		2.40 BSC		
D3	2.80	3.30	3.80	
E		6.00 BSC		
E1	3.525	3.675	3.825	
E2	1.05	1.20	1.35	
E3		3.80 BSC		
E4	4.20	4.70	5.20	
е		1.27 BSC		
I			0.15	
L	0.15	0.25	0.35	
L1	0.925	1.05	1.175	
L2	0.45	0.575	0.70	
θ		12° BSC		
9 1		7° BSC		
j		0.20 BSC		

4.2 PowerFLAT[™] 5x6 dual side cooling packing information Figure 21: PowerFLAT[™] 5x6 dual side cooling tape (dimensions are in mm)

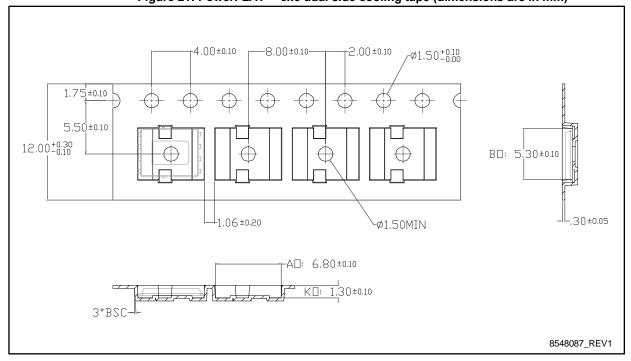
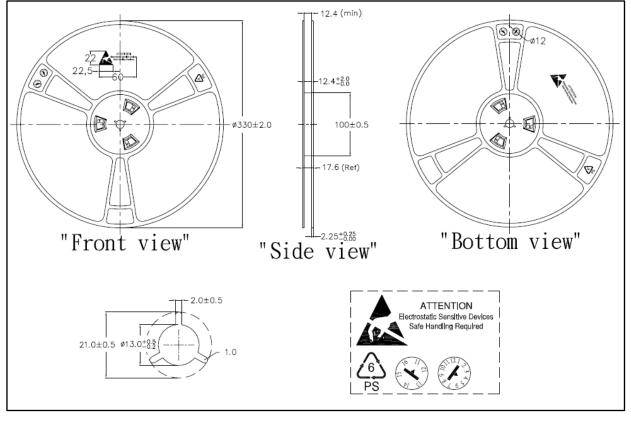



Figure 22: PowerFLAT™ 5x6 dual side cooling reel (dimensions are in mm)

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
16-Feb-2016	1	First release.
07-Feb-2017	2	Document status promoted from preliminary to production data. Updated <i>Table 3: "Thermal data"</i> and <i>Table 5: "On/off states"</i> . Minor text changes.
23-Feb-2017	3	Updated features on cover page. Updated Table 5: "On/off states" and Figure 9: "Normalized gate threshold voltage vs temperature". Minor text changes
12-Jul-2017	4	Added Section 4.2: "PowerFLAT™ 5x6 dual side cooling packing information".

STLD125N4F6AG

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

