

7.9 V, 24 A unidirectional TVS in SOD882T

SOD882T package

Pin configuration

Features

- Low clamping voltage
- Unidirectional diode
- · Low leakage current
- SOD882T (0402) package
- ECOPACK2 compliant component
- Exceeds the IEC 61000-4-2 level 4 standard:
 - ± 30 kV (air discharge)
 - ± 30 kV (contact discharge)

Application

Where transient over voltage protection in ESD sensitive equipment is required, such as:

- Smartphones, mobile phones, and accessories
- Tablets and notebooks
- Portable multimedia devices and accessories
- · Wearable, home automation, healthcare
- · Highly integrated systems

Description

The ESDA9P25-1T2 is a unidirectional single line TVS diode designed to protect the power line or other low speed I/O against ESD and small surge transients.

The device is ideal for applications where high power TVS and board space saving are required.

Product status link

ESDA9P25-1T2

1 Characteristics

Table 1. Absolute maximum ratings (T_{amb} = 25 °C)

Symbol		Value	Unit	
V	Peak pulse voltage	IEC 61000-4-2 contact discharge	30	kV
V _{pp}		IEC 61000-4-2 air discharge	30	
P _{pp}	Peak pulse power (8/20 µs)		300	W
I _{pp}	Peak pulse current (8/20 μs)		24	Α
T _{op}	Operating junction temperature range		-55 to 150	°C
T _{stg}	Storage junction temperature range		-55 to 150	°C
TL	Maximum lead temperature for soldering during 10 s		260	°C

Figure 1. Electrical characteristics (definitions)

Symbol Parameter V_{BR} Breakdown voltage V_{CL} Clamping voltage I_{RM} Leakage current @ V RM = V_{RM} = Stand-off voltage Peak pulse current = I_{PP} $R_{\scriptscriptstyle D}$ Dynamic resistance = I_{R} Breakdown current

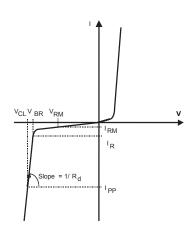


Table 2. Electrical characteristics (values) (T_{amb} = 25° C)

Symbol	Test conditions		Min.	Тур.	Max.	Unit
V _{RM}	Stand-off voltage				7.9	V
I _{RM}	Leakage current	V _{RM} = 7.9 V		15	300	nA
V _{BR}	Breakdown voltage	I _R = 1 mA	8.1	8.7	9.2	V
	Reverse clamping voltage	I _{PP} = 20 A 8/20μs		12.3	13.5	V
V _{CL}		I _{PP} = 24 A 8/20μs		13.7	14.5	
		TLP 16 A		10		
R _D	Dynamic resistance	8/20 µs waveform		0.18		Ω
. 10		TLP – Pulse duration 100 ns		0.09		32
C _{LINE}	Line capacitance	V _{LINE} = 0 V, F = 1 MHz		130		pF

DS13449 - Rev 1 page 2/10

1.1 Characteristics (curves)

Figure 2. Peak pulse power dissipation versus initial junction temperature (typical value)

PPP (W)

8/20 µs

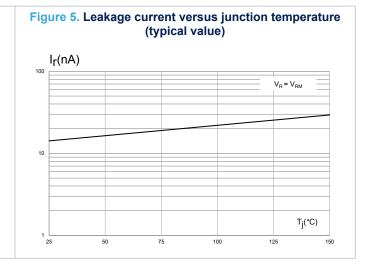
8/20 µs

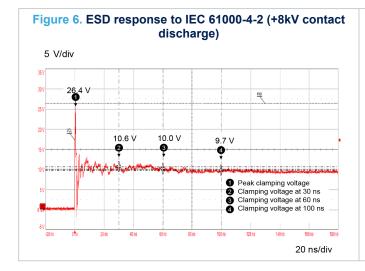
Tj (°C)

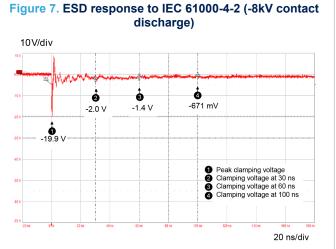
25 50 75 100 125 150 175

Figure 3. Peak pulse power versus exponential pulse duration (maximum values)

PPP (W)


Ty initial = 25 °C


Figure 4. Peak pulse current versus clamping voltage (maximum value)


1 PP (A)

10 8/20 µs

1 V_{CL}(V)

DS13449 - Rev 1 page 3/10

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 SOD882T package information

Figure 8. SOD882T package outline

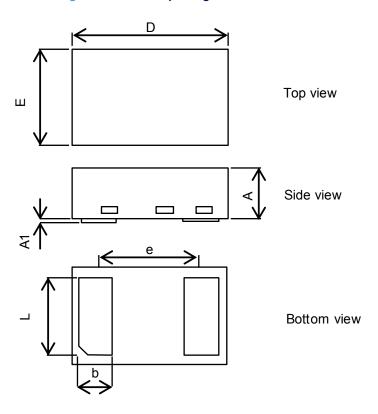


Table 3. SOD882T package mechanical data

	Dimensions				
Ref.	Millimeters				
	Min.	Тур.	Max.		
A	0.30		0.40		
A1	0.00	0.02	0.05		
L	0.45	0.50	0.55		
D		1.00			
E		0.60			
е		0.65			
b	0.20	0.25	0.30		

DS13449 - Rev 1 page 4/10

Figure 9. SOD882T recommended footprint

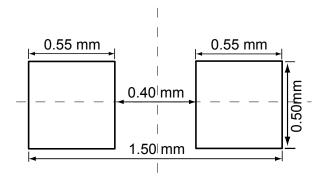
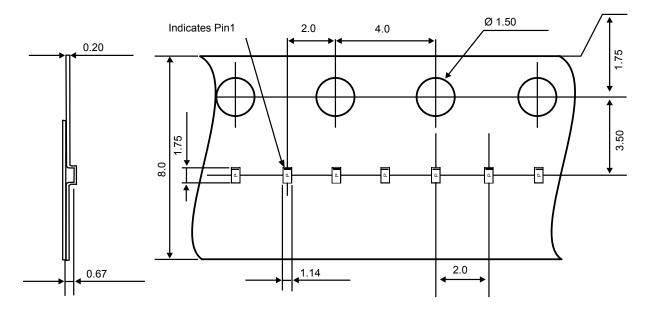



Figure 10. Marking

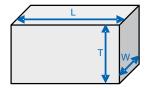
Note: The marking can be rotated by multiples of 90° to differentiate assemble location. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.

User direction of unreeling

Figure 11. Tape and reel specification

DS13449 - Rev 1 page 5/10

All dimensions are typical values in mm

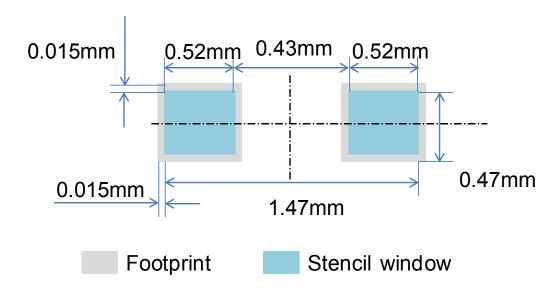


3 Recommendation on PCB assembly

3.1 Stencil opening design

- 1. General recommendation on stencil opening design
 - a. Stencil opening dimensions: L (Length), W (Width), T (Thickness).

Figure 12. Stencil opening recommendation


- b. General design rule
 - Stencil thickness (T) = 75 ~ 125 μm

$$\circ \frac{W}{T} \ge 1.5$$

$$\circ \qquad \frac{L \times W}{2T(L+W)} \ge 0.66$$

- 1. Reference design
 - a. Stencil opening thickness: 100 µm
 - b. Stencil opening for leads: Opening to footprint ratio is 90%

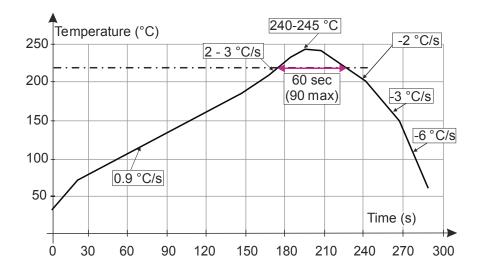
Figure 13. Recommended stencil window position in mm

DS13449 - Rev 1 page 6/10

3.2 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed.
- 4. Use solder paste with fine particles: powder particle size 20-45 μm.

3.3 Placement

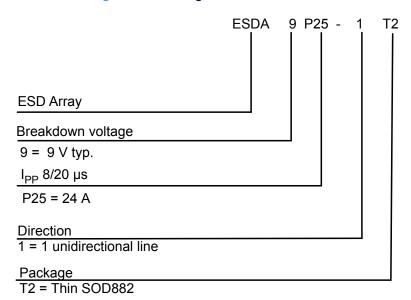

- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- 3. Standard tolerance of ±0.05 mm is recommended.
- 4. 3.5 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.4 PCB design preference

- 1. To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away.

3.5 Reflow profile

Figure 14. ST ECOPACK recommended soldering reflow profile for PCB mounting


Note: Minimize air convection currents in the reflow oven to avoid component movement.

DS13449 - Rev 1 page 7/10

4 Ordering information

Figure 15. Ordering information scheme

Table 4. Ordering information

Order code	Marking ⁽¹⁾	Package	Weight	Base qty.	Delivery mode
ESDA9P25-1T2	Р	SOD882T (0402)	0.76 mg	12000	Tape and reel

1. The marking can be rotated by multiples of 90° to differentiate assembly location.

DS13449 - Rev 1 page 8/10

Revision history

Table 5. Document revision history

Date	Revision	Changes
15-Sep-2020	1	First issue.

DS13449 - Rev 1 page 9/10

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DS13449 - Rev 1 page 10/10